Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
2.
Mol Biotechnol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658470

RESUMO

Cordyceps, an entomopathogenic fungus belonging to the Ascomycota phylum, is a familiar remedial mushroom that is extensively used in the traditional medicinal system, especially in South Asian nations. The significance of this genus' members in a range of therapeutic and biotechnological applications has long been acknowledged. The exceedingly valuable fungus Ophiocordyceps sinensis (Cordyceps sinensis) is found in the alpine meadows of Bhutan, Nepal, Tibet, and India, where it is severely harvested. Driven by market demand and ecological concerns, the study highlights challenges in natural C. sinensis collection and emphasizes the shift towards sustainable artificial cultivation methods. This in-depth review navigates Cordyceps cultivation strategies, focusing on C. sinensis and the viable alternative, C. militaris. The escalating demand for Cordyceps fruiting bodies and bioactive compounds prompts a shift toward sustainable artificial cultivation. While solid-state fermentation on brown rice remains a traditional method, liquid culture, especially submerged and surface/static techniques, emerges as a key industrial approach, offering shorter cultivation periods and enhanced cordycepin production. The review accentuates the adaptability and scalability of liquid culture, providing valuable insights for large-scale Cordyceps production. The future prospects of Cordyceps cultivation require a holistic approach, combining scientific understanding, technological innovation, and sustainable practices to meet the demand for bioactive metabolites while ensuring the conservation of natural Cordyceps populations.

3.
Poult Sci ; 103(4): 103554, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401225

RESUMO

Heat stress (HS) causes oxidative damage and abnormal metabolism of muscle, thus impairing the meat quality in broilers. Selenium is an indispensable element for enhancing antioxidant systems. In our previous study, we synthesized a novel type of biogenic selenium nanoparticles synthesized with alginate oligosaccharides (SeNPs-AOS), and found that the particle size of Se is 80 nm and the Se content is 8% in the SeNPs-AOS; and dietary 5 mg/kg SeNPs-AOS has been shown to be effective against HS in broilers. However, whether SeNPs-AOS can mitigate HS-induced the impairment of thigh muscle quality in broilers is still unclear. Therefore, the purpose of this study was to investigate the protective effects of dietary SeNPs-AOS on meat quality, antioxidant capacity, and metabolomics of thigh muscle in broilers under HS. A total of 192 twenty-one-day-old Arbor Acres broilers were randomly divided into 4 groups with 6 replicates per group (8 broilers per replicate) according to a 2 × 2 experimental design: thermoneutral group (TN, broilers raised under 23±1.5°C); TN+SeNPs-AOS group (TN group supplemented 5 mg/kg SeNPS-AOS); HS group (broilers raised under 33 ± 2°C for 10 h/d); and HS + SeNPs-AOS group (HS group supplemented 5 mg/kg SeNPS-AOS). The results showed that HS increased the freezing loss, cooking loss, and malondialdehyde (MDA) content of thigh muscle, whereas decreased the total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities, as well as downregulated the mRNA expression of SOD2, CAT, GPX3, nuclear factor erythroid 2-related factor 2 (Nrf2), selenoprotein S (SELENOS), solute carrier family 7 member 11 (SLC7A11), GPX4, and ferroportin 1 (Fpn1) of thigh muscle (P < 0.05). Dietary SeNPS-AOS reduced the b* value, elevated the pH0min value and the activities of T-SOD, GSH-Px, glutathione S-transferase (GST) and the mRNA expression levels of GSTT1, GSTA3, GPX1, GPX3, ferritin heavy polypeptide-1 (FTH1), and Fpn1 of thigh muscle in broilers under HS (P < 0.05). Nontargeted metabolomics analysis identified a total of 79 metabolites with significant differences among the four groups, and the differential metabolites were mainly enriched in 8 metabolic pathways including glutathione metabolism and ferroptosis (P < 0.05). In summary, dietary 5 mg/kg SeNPs-AOS (Se content of 8%) could alleviate HS-induced impairment of meat quality by improving the oxidative damage, metabolic disorders and ferroptosis of thigh muscle in broilers challenged with HS. Suggesting that the SeNPs-AOS may be used as a novel nano-modifier for meat quality in broilers raised in thermal environment.


Assuntos
Ferroptose , Selênio , Animais , Antioxidantes/metabolismo , Selênio/metabolismo , Galinhas/fisiologia , Coxa da Perna , Suplementos Nutricionais/análise , Músculo Esquelético , Resposta ao Choque Térmico , Superóxido Dismutase/metabolismo , Carne/análise , RNA Mensageiro/metabolismo , Ração Animal/análise
4.
Antioxidants (Basel) ; 12(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38136152

RESUMO

Selenium (Se) is an indispensable trace element with versatile functions in antioxidant defense in poultry. In our previous study, we synthesized a novel type of biogenic selenium nanoparticle based on alginate oligosaccharides (SeNPs-AOS), and found that the particles are sized around 80 nm with an 8% Se content, and the dietary addition of 5 mg/kg of SeNPs-AOS could effectively alleviate the deleterious effects of heat stress (HS) in broilers, but it is still unclear whether SeNPs-AOS can improve the meat quality. Therefore, the aim of this study was to evaluate the protective effects of SeNPs-AOS on breast meat quality in heat-stressed broilers, and explore the relevant mechanisms. Birds at the age of 21 days were randomly divided into four groups with six replicates per group (eight broilers per replicate) according to a 2 × 2 experimental design, using HS (33 ± 2 °C, 10 h/day vs. thermoneutral, TN, under 23 ± 1.5 °C) and SeNPs-AOS (5 mg/kg feed vs. no inclusion) as variables. The results showed that dietary SeNPs-AOS decreased the cooking loss (p < 0.05), freezing loss (p < 0.001), and shear force (p < 0.01) of breast muscle in heat-stressed broilers. The non-targeted metabolomics analysis of the breast muscle identified 78 differential metabolites between the HS and HS + SeNPs-AOS groups, mainly enriched in the arginine and proline metabolism, ß-alanine metabolism, D-arginine and D-ornithine metabolism, pantothenate, and CoA biosynthesis pathways (p < 0.05). Meanwhile, supplementation with SeNPs-AOS increased the levels of the total antioxidant capacity (T-AOC), the activities of catalase (CAT) and glutathione peroxidase (GSH-Px), and decreased the content of malondialdehyde (MDA) in the breast muscle (p < 0.05) in broilers under HS exposure. Additionally, SeNPs-AOS upregulated the mRNA expression of CAT, GPX1, GPX3, heme oxygenase-1 (HO-1), masculoaponeurotic fibrosarcoma G (MafG), MafK, selenoprotein W (SELENOW), SELENOK, ferritin heavy polypeptide-1 (FTH1), Ferroportin 1 (Fpn1), and nuclear factor erythroid 2-related factor 2 (Nrf2) (p < 0.05), while it downregulated Kelch-like ECH-associated pro-36 tein 1 (Keap1) and prostaglandin-endoperoxide Synthase 2 (PTGS2) expression (p < 0.05) in broilers under HS. These findings demonstrated that the dietary addition of SeNPs-AOS mitigated HS-induced oxidative damage and metabolite changes in the breast muscle of broilers, which may be related to the regulation of the Nrf2 signaling pathway and selenoprotein synthesis. In addition, SeNPs-AOS upregulated the breast muscle gene expression of anti-ferroptosis-related molecules in broilers under HS, suggesting that SeNPs-AOS can be used as novel Se supplements against HS in broilers.

5.
Aquat Toxicol ; 265: 106759, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977011

RESUMO

The rapid proliferation of microplastics (MPs) and nanoplastics (NPs) in our environment presents a formidable hazard to both biotic and abiotic components. These pollutants originate from various sources, including commercial production and the breakdown of larger plastic particles. Widespread contamination of the human body, agroecosystems, and animals occurs through ingestion, entry into the food chain, and inhalation. Consequently, the imperative to devise innovative methods for MPs and NPs remediation has become increasingly apparent. This review explores the current landscape of strategies proposed to mitigate the escalating threats associated with plastic waste. Among the array of methods in use, microbial remediation emerges as a promising avenue for the decomposition and reclamation of MPs and NPs. In response to the growing concern, numerous nations have already implemented or are in the process of adopting regulations to curtail MPs and NPs in aquatic habitats. This paper aims to address this gap by delving into the environmental fate, behaviour, transport, ecotoxicity, and management of MPs and NPs particles within the context of nanoscience, microbial ecology, and remediation technologies. Key findings of this review encompass the intricate interdependencies between MPs and NPs and their ecosystems. The ecological impact, from fate to ecotoxicity, is scrutinized in light of the burgeoning environmental imperative. As a result, this review not only provides an encompassing understanding of the ecological ramifications of MPs and NPs but also highlights the pressing need for further research, innovation, and informed interventions.


Assuntos
Ecossistema , Poluentes Químicos da Água , Animais , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Cadeia Alimentar
6.
Antioxidants (Basel) ; 12(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38001826

RESUMO

Selenium (Se) is an essential trace element for maintaining health due to its ideal antioxidant properties. We previously prepared a new type of biogenic selenium nanoparticles based on alginate oligosaccharides (SeNPs-AOS), and this study aimed to investigate the protective effects of SeNPs-AOS (Se particle size = 80 nm, Se content = 8%) on organ health in broilers challenged with HS. A total of 192 21-day-old Arbor Acres broilers were randomly divided into four groups according to a 2 × 2 experimental design, including a thermoneutral zone group (TN, raised under 23 ± 1.5 °C); TN + SeNPs-AOS group (TN group supplemented 5 mg/kg SeNPS-AOS); HS group (HS, raised under 33 ± 2 °C for 10 h/day); and HS + SeNPs-AOS group (HS group supplemented 5 mg/kg SeNPS-AOS). There were six replicates in each group (eight broilers per replicate). The results showed that SeNPs-AOS improved the splenic histomorphology, enhanced the activity of catalase (CAT) and glutathione peroxidase (GSH-Px) of the spleen, as well as upregulating the splenic mRNA expression of antioxidant-related genes in broilers under HS. In addition, SeNPs-AOS reversed the pathological changes in bursa caused by HS increased the activity of GST, GSH-Px, and CAT and upregulated the mRNA expression of Nrf2 and antioxidant-related genes in the bursa of heat-stressed broilers. In addition, dietary SeNPs-AOS improved the hepatic damage, increased the activity of GSH-Px in the liver, and upregulated the mRNA expression of antioxidant-related genes while downregulating the Keap1 gene expression of the liver in broilers during HS. Moreover, dietary SeNPs-AOS upregulated the anti-ferroptosis-related genes expression of liver in broilers under HS. In conclusion, dietary SeNPs-AOS could relieve HS-induced oxidative damage to the spleen, bursa of Fabricius and liver in broilers by upregulating the Nrf2-mediated antioxidant gene expression and SeNPs-AOS could also upregulate the expression of hepatic Nrf2-related anti-ferroptosis genes in heat-stressed broilers. These findings are beneficial for the development of new nano-antioxidants in broilers.

8.
Front Vet Sci ; 10: 1151988, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323836

RESUMO

In order to explore the impact of antibiotics (enrofloxacin) on microbial community in aquatic environment, an indoor aquatic ecological model was built, and different concentrations of enrofloxacin (0.05, 0.5, 5, and 50 mg/L) were added in the aquatic ecological model. In addition, the water and sediment samples were collected on the 0, 7, 30, and 60 days, and the changes in microbial community were studied through 16S rDNA high-throughput sequencing. The results showed that when the concentration of enrofloxacin was 50 mg/L, the relative abundance of Actinomycetes was increased. In the water, the bacterial richness and diversity communities first decreased and then gradually recovered with the passage of time; On the 7th day, the diversity and richness index of species in the treatment groups with enrofloxacin at 5 and 50 mg/L decreased to the lowest; On the 30th day, the diversity and richness index of species began to rise; On the 60th day, the diversity index and richness index of water species began to increase, while the diversity index and richness index of sediment species decreased. In conclusion, the addition of enrofloxacin negatively affected the microbial community structure in an indoor aquatic ecological model, 50 mg/L enrofloxacin could increase the relative abundance of Actinomycetes, and decrease the diversity and richness index of water and sediment.

9.
Life (Basel) ; 13(4)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37109483

RESUMO

Advancements and developments in the 3D bioprinting have been promising and have met the needs of organ transplantation. Current improvements in tissue engineering constructs have enhanced their applications in regenerative medicines and other medical fields. The synergistic effects of 3D bioprinting have brought technologies such as tissue engineering, microfluidics, integrated tissue organ printing, in vivo bioprinted tissue implants, artificial intelligence and machine learning approaches together. These have greatly impacted interventions in medical fields, such as medical implants, multi-organ-on-chip models, prosthetics, drug testing tissue constructs and much more. This technological leap has offered promising personalized solutions for patients with chronic diseases, and neurodegenerative disorders, and who have been in severe accidents. This review discussed the various standing printing methods, such as inkjet, extrusion, laser-assisted, digital light processing, and stereolithographic 3D bioprinter models, adopted for tissue constructs. Additionally, the properties of natural, synthetic, cell-laden, dECM-based, short peptides, nanocomposite and bioactive bioinks are briefly discussed. Sequels of several tissue-laden constructs such as skin, bone and cartilage, liver, kidney, smooth muscles, cardiac and neural tissues are briefly analyzed. Challenges, future perspectives and the impact of microfluidics in resolving the limitations in the field, along with 3D bioprinting, are discussed. Certainly, a technology gap still exists in the scaling up, industrialization and commercialization of this technology for the benefit of stakeholders.

10.
Antibiotics (Basel) ; 12(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37107050

RESUMO

The main objective of the present research work is to assess the biological properties of the aqueous plant extract (ACAE) synthesised silver nanoparticles from the herbal plant Ageratum conyzoides, and their biological applications. The silver nanoparticle syntheses from Ageratum conyzoides (Ac-AgNPs) were optimised with different parameters, such as pH (2, 4, 6, 8 and 10) and varied silver nitrate concentration (1 mM and 5 mM). Based on the UV-vis spectroscopy analysis of the synthesised silver nanoparticles, the concentration of 5 mM with the pH at 8 was recorded as the peak reduction at 400 nm; and these conditions were optimized were used for further studies. The results of the FE-SEM analysis recorded the size ranges (~30-90 nm), and irregular spherical and triangular shapes of the AC-AgNPs were captured. The characterization reports of the HR-TEM investigation of AC-AgNPs were also in line with the FE-SEM studies. The antibacterial efficacies of AC-AgNPs have revealed the maximum zone of inhibition against S. typhi to be within 20 mm. The in vitro antiplasmodial activity of AC-AgNPs is shown to have an effective antiplasmodial property (IC50:17.65 µg/mL), whereas AgNO3 has shown a minimum level of IC50: value 68.03 µg/mL, and the Ac-AE showed >100 µg/mL at 24 h of parasitaemia suppression. The α-amylase inhibitory properties of AC-AgNPs have revealed a maximum inhibition similar to the control Acarbose (IC50: 10.87 µg/mL). The antioxidant activity of the AC-AgNPs have revealed a better property (87.86% ± 0.56, 85.95% ± 1.02 and 90.11 ± 0.29%) when compared with the Ac-AE and standard in all the three different tests, such as DPPH, FRAP and H2O2 scavenging assay, respectively. The current research work might be a baseline for the future drug expansion process in the area of nano-drug design, and its applications also has a lot of economic viability and is a safer method in synthesising or producing silver nanoparticles.

11.
Antibiotics (Basel) ; 12(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36978410

RESUMO

The Asteraceae family is one of the largest families in the plant kingdom with many of them extensively used for significant traditional and medicinal values. Being a rich source of various phytochemicals, they have found numerous applications in various biological fields and have been extensively used for therapeutic purposes. Owing to its potential phytochemicals present and biological activity, these plants have found their way into pharmaceutical industry as well as in various aspects of nanotechnology such as green synthesis of metal oxide nanoparticles. The nanoparticles developed from the plants of Asteraceae family are highly stable, less expensive, non-toxic, and eco-friendly. Synthesized Asteraceae-mediated nanoparticles have extensive applications in antibacterial, antifungal, antioxidant, anticancer, antidiabetic, and photocatalytic degradation activities. This current review provides an opportunity to understand the recent trend to design and develop strategies for advanced nanoparticles through green synthesis. Here, the review discussed about the plant parts, extraction methods, synthesis, solvents utilized, phytochemicals involved optimization conditions, characterization techniques, and toxicity of nanoparticles using species of Asteraceae and their potential applications for human welfare. Constraints and future prospects for green synthesis of nanoparticles from members of the Asteraceae family are summarized.

12.
Anal Chem ; 95(12): 5256-5266, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36917632

RESUMO

Myxobacteria are fascinating prokaryotes featuring a potent capacity for producing a wealth of bioactive molecules with intricate chemical topology as well as intriguing enzymology, and thus it is critical to developing an efficient pipeline for bioprospecting. Herein, we construct the database MyxoDB, the first public compendium solely dedicated to myxobacteria, which enabled us to provide an overview of the structural diversity and taxonomic distribution of known myxobacterial natural products. Moreover, we demonstrated that the cutting-edge NMR-based metabolomics was effective to differentiate the biosynthetic priority of myxobacteria, whereby MyxoDB could greatly streamline the dereplication of multifarious known compounds and accordingly speed up the discovery of new compounds. This led to the rapid identification of a class of linear di-lipopeptides (archangimins) and a rare rearranged sterol (corasterol) that were endowed with unique chemical architectures and/or biosynthetic enzymology. We also showcased that NMR-based metabolomics, MyxoDB, and genomics can also work concertedly to accelerate the targeted discovery of a polyketidic compound pyxipyrrolone C. All in all, this study sets the stage for the discovery of many more novel natural products from underexplored myxobacterial resources.


Assuntos
Produtos Biológicos , Myxococcales , Produtos Biológicos/química , Bioprospecção , Imageamento por Ressonância Magnética , Metabolômica
13.
Appl Biochem Biotechnol ; 195(7): 4429-4446, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36701091

RESUMO

The limitations of graft material, and surgical sites for autografts in bone defects treatment have become a significant challenge in bone tissue engineering. Phytocompounds markedly affect bone metabolism by activating the osteogenic signaling pathways. The present study investigated the biocompatibility of the bio-composite thermo-responsive hydrogels consisting of chitosan (CS), and methylcellulose (MC) encapsulated with veratric acid (VA) as a restorative agent for bone defect treatment. The spectroscopy analyses confirmed the formation of CS/MC hydrogels and VA encapsulated CS/MC hydrogels (CS/MC-VA). Molecular analysis of the CS-specific MC decamer unit with VA complex exhibited a stable integration in the system. Further, Runx2 (runt-related transcription factor 2) was found in the docking mechanism with VA, indicating a high binding affinity towards the functional site of the Runx2 protein. The formulated CS/MC-VA hydrogels exhibited biocompatibility with the mouse mesenchymal stem cells, while VA promoted osteogenic differentiation in the stem cells, which was verified by calcium phosphate deposition through the von Kossa staining. The study results suggest that CS/MC-VA could be a potential therapeutic alternative source for bone regeneration.


Assuntos
Quitosana , Osteogênese , Camundongos , Animais , Quitosana/química , Hidrogéis/química , Metilcelulose , Engenharia Tecidual/métodos , Diferenciação Celular , Alicerces Teciduais/química
14.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296552

RESUMO

The tracing of an alternative drug, Phytochemicals is a promising approach to the viral threats that have emerged over the past two years. Across the world, herbal medicine is a better solution against anti-viral diseases during pandemic periods. Goniothalamus wightii is an herbal plant, which has diverse bioactive compounds with anticancer, antioxidant, and anti-viral properties. The aim of the study was to isolate the compound by chromatography studies and functionalization by FT-IR, LC-MS, and NMR (C-NMR, H-NMR). As a result, the current work focuses on whether (S)-Goniathalamin and its analogue could act as natural anti-viral molecules for multiple target proteins viz., MPro, RdRp, and SPro, which are required for SARS-CoV-2 infection. Overall, 954 compounds were examined and the molecular-docking studies were performed on the maestro platform of Schrodinger software. Molecular-dynamics simulation studies were performed on two complex major compounds to confirm their affinity across 150 simulations. This research suggests that plant-based drugs have high levels of antiviral properties against coronavirus. However, more research is needed to verify its antiviral properties.


Assuntos
Tratamento Farmacológico da COVID-19 , Goniothalamus , Humanos , SARS-CoV-2 , Proteases 3C de Coronavírus , Antioxidantes , Espectroscopia de Infravermelho com Transformada de Fourier , Cisteína Endopeptidases/química , Antivirais/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , RNA Polimerase Dependente de RNA
15.
Drug Dev Ind Pharm ; 48(8): 406-416, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36268597

RESUMO

OBJECTIVES: The present study aims to investigate the protective effect of Euphorbia thymifolia and Euphorbia hirta extracts on in vitro antioxidant activity and in vivo analysis on hepatic marker enzyme levels and histopathological changes in the liver of carbon tetrachloride (CCl4) induced hepatotoxicity rats. MATERIALS AND METHODS: This study includes 42 adult male Albino Wistar rats randomly divided into seven treatment groups, including control (basal diet, G1), CCl4-induced single dose (1.5 ml/kg, i.p.) as the negative control (G2), G1 supplemented with 300 mg/kg of ethanol extract of E. thymifolia (G3) and E. hirta (G4), G2 supplemented with 300 mg/kg of ethanol extract of E. thymifolia (G5), E. hirta (G6), and silymarin (25 mg/kg b.w.) used as a standard drug (G7) for 21-days experimental period. RESULTS: The ethanolic extracts of E. thymifolia and E. hirta exhibited potential in vitro antioxidant activity in a dose-dependent manner (25 µg/ml, 50 µg/ml, 100 µg/ml, 200 µg/ml and 250 µg/ml). Oxidative stress caused by CCl4-induced the liver damage, including changes in liver marker enzymes (aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase), enzymatic (superoxide dismutase and catalase), non-enzymatic antioxidants (lipid peroxides and glutathione) and hepatocellular alterations such as hydropic degeneration, irregular hepatocytes, and distention of the vein. Administration of E. thymifolia and E. hirta significantly (p < 0.05) restored the enzyme activity along with the histology of the liver. CONCLUSION: The results from the current study demonstrate that E. thymifolia and E. hirta have the property of restoring hepatic redox capacity and antioxidant activities against CCl4-induced acute liver damage.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Euphorbia , Masculino , Ratos , Animais , Tetracloreto de Carbono , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ratos Wistar , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Estresse Oxidativo , Fígado , Etanol/farmacologia , Peroxidação de Lipídeos
16.
Antioxidants (Basel) ; 11(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36139831

RESUMO

Aflatoxin B1 (AFB1) is a major risk factor in animal feed. Seaweed (Enteromorpha prolifera)-derived polysaccharides (SDP) are natural antioxidants with multiple biological functions, which may have an in vivo detoxification effect on AFB1. The current study aimed to evaluate whether SDP could mitigate AFB1-induced hepatotoxicity in broilers. A total of 216 chickens (male, 5 weeks old) were randomly allocated to three groups with differing feeding patterns, lasting 4 weeks: (1) control group (CON, fed a basal diet); (2) AFB1 group (fed a basal diet mixed with 0.1 mg/kg AFB1); and (3) AFB1 + SDP group (AFB1 group + 0.25% SDP). The results showed that dietary SDP improved the liver function-related biochemical indicators in serum, and reversed the increase in relative liver weight, hepatic apoptosis and histological damage of broilers exposed to AFB1. SDP treatment also reduced the activity and mRNA expression of phase I detoxification enzymes, while increasing the activity and mRNA expression of phase II detoxification enzymes in the livers of AFB1-exposed broilers, which was involved in the activation of p38 mitogen-activated protein kinase (p38MAPK)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. In conclusion, dietary SDP alleviated AFB1-induced liver injury of broilers through inhibiting phase I detoxification enzymes and upregulating p38MAPK/Nrf2-mediated phase II detoxification enzymes pathway.

17.
Artigo em Inglês | MEDLINE | ID: mdl-35911161

RESUMO

Carrageenan, a sulfated polysaccharide, was produced by certain species of marine red seaweeds, which have been used as a significant source of food, feed, and antibiotic agent throughout history due to their alleged human health benefits. The present study aimed to derive the polysaccharides from Hypnea valentiae and describe the biological applications. Carrageenan was characterized by FT-IR, C-NMR, AFM, and their antimicrobial, antioxidant, and anticoagulant capabilities; furthermore, the larvicidal effect of methanol extract was generated from the seaweed against Aedes aegypti larvae at various concentrations. The molecular docking experiments were carried out computationally for finding the molecular insight of the macromolecules and small molecules' interaction using GLIDE docking by using Schrodinger software. Antibacterial zones of inhibition in different concentrations are compared with the 40 mg/mL higher activity against bacterial pathogens. Carrageenan is strong in all antioxidant activities, with the overall antioxidant (70.1 ± 0.61%) of radical at 250 µg/mL concentration being exhibited. The DPPH scavenging is effective in the inhibition of (65.74 ± 0.58%) radical at a concentration of 160 µg/mL and the hydroxyl scavenging (65.72 ± 0.60%) of activity at a concentration of 125 µg/mL being exhibited. Anticoagulant activities (APPT and PT) of carrageenan fraction were tested. H. valentiae and heparin sulphate shows higher activity of APTT (106.50 IU at 25 µg/mL) in comparison with the PT test (57.86 IU at 25 µg/mL) and the methanol extraction of higher larvicidal activity on A. aegypti (LC50 = 99.675 µg/mL). In this study, the carrageenan was exploited through in vitro and in silico molecular docking studies against antimicrobial, antioxidant, and anticoagulant properties. The results were establishing the potentiality of the carrageenan which is an alternative source to control the mosquitocidal property in the future. Moreover, molecular docking of carrageenan against multiple targets results in -7 to -6 Kcal/mol binding score. Findings of carrageen from in vitro to in silico studies are needed for further validation of clinical pieces of evidence.

18.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36012326

RESUMO

The present study evaluated the properties and ochratoxin A (OTA) degradation capacity of the dietary probiotic Pediococcus pentosaceus BalaMMB-P3, isolated from a milk coagulant. The acidic tolerance of the isolate at pH 2-3 was checked with bile salts. No hemolytic activity was noted, which confirmed the nonpathogenicity of the strain. The isolate was tested in vitro for antibiotic susceptibility, enzymatic activity, bile salts hydrolase activity and antifungal activity against Penicillium verrucosum, Fusarium graminearum and Aspergillus ochraceus. A molecular docking-based OTA toxicity assessment was carried out for multitargeted proteins. The 16S rRNA gene-based phylogenetic assessment identified the strain as P. pentosaceus, and was authenticated in GenBank. The carboxylesterase and glutathione s-transferase enzymes showed active and strong interactions with esters and amide bonds, respectively. The compound exhibited carcinogenic and cytotoxicity effects at an LD50 value of 20 mg/kg. Furthermore, the strain showed a potent ability to reduce OTA and suggested the prospects for utilization in nutritional aspects of food.


Assuntos
Pediococcus pentosaceus , Probióticos , Ácidos e Sais Biliares/metabolismo , Simulação de Acoplamento Molecular , Ocratoxinas , Pediococcus/metabolismo , Pediococcus pentosaceus/metabolismo , Filogenia , Probióticos/metabolismo , RNA Ribossômico 16S/genética
19.
Front Mol Biosci ; 9: 918101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836934

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus can cause a sudden respiratory disease spreading with a high mortality rate arising with unknown mechanisms. Still, there is no proper treatment available to overcome the disease, which urges the research community and pharmaceutical industries to screen a novel therapeutic intervention to combat the current pandemic. This current study exploits the natural phytochemicals obtained from clove, a traditional natural therapeutic that comprises important bioactive compounds used for targeting the main protease of SARS-CoV-2. As a result, inhibition of viral replication effectively procures by targeting the main protease, which is responsible for the viral replication inside the host. Pharmacokinetic studies were evaluated for the property of drug likeliness. A total of 53 bioactives were subjected to the study, and four among them, namely, eugenie, syzyginin B, eugenol, and casuarictin, showed potential binding properties against the target SARS-CoV-2 main protease. The resultant best bioactive was compared with the commercially available standard drugs. Furthermore, validation of respective compounds with a comprehensive molecular dynamics simulation was performed using Schrödinger software. To further validate the bioactive phytochemicals and delimit the screening process of potential drugs against coronavirus disease 2019, in vitro and in vivo clinical studies are needed to prove their efficacy.

20.
Mar Drugs ; 20(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35736162

RESUMO

With global warming, heat stress (HS) has become a worldwide concern in both humans and animals. The ameliorative effect of seaweed (Enteromorpha prolifera) derived polysaccharides (SDP) on HS-induced oxidative stress and the inflammatory response of an immune organ (spleen) was evaluated using an animal model (Gallus gallus domesticus). In total, 144 animals were used in this 4-week trial and randomly assigned to the following three groups: thermoneutral zone, HS, and HS group supplemented with 1000 mg/kg SDP. Dietary SDP improved the antioxidant capacity and reduced the malondialdehyde (MDA) of the spleen when exposed to HS, regulated via enhancing nuclear factor erythroid 2-related factor-2 (Nrf2) signaling. Furthermore, the inclusion of SDP reduced the levels of pro-inflammatory cytokines and alleviated HS-induced splenic inflammatory response by suppressing the nuclear factor-kappa B (NF-κB) p65 signaling. These findings suggest that the SDP from E. prolifera can be used as a functional food and/or feed supplement to attenuate HS-induced oxidative stress and inflammatory responses of the immune organs. Moreover, the results could contribute to the development of high-value marine products from seaweed for potential use in humans and animals, owing to their antioxidant and anti-inflammatory effects.


Assuntos
Fator 2 Relacionado a NF-E2 , Alga Marinha , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Resposta ao Choque Térmico , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Alga Marinha/metabolismo , Transdução de Sinais , Baço/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...