Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 514
Filtrar
1.
Int J Ophthalmol ; 17(3): 551-557, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721499

RESUMO

AIM: To introduce the macular hole (MH) hydromassage technique as a potentially beneficial approach for the treatment of large or persistent MH. METHODS: This retrospective observational case series comprised 16 consecutive patients (17 eyes) diagnosed with MH. Inclusion criteria involved a hole aperture diameter larger than 600 µm or the presence of an unclosed MH larger than 600 µm following the previous vitrectomy. Standard MH repair procedures were administered in all cases, involving the manipulation and aspiration of the hole margin through the application of water flow with a soft-tip flute needle. A comprehensive assessment was conducted for each case before and after surgery, and optical coherence tomography (OCT) images were captured at every follow-up point. RESULTS: The mean preoperative aperture diameter was 747±156 µm (range 611-1180 µm), with a mean base diameter of 1390±435 µm (range 578-2220 µm). Following surgery, all cases achieved complete anatomical closure of MH, with 13 cases (76.5%) exhibiting type 1 closure and 4 cases (23.5%) demonstrating type 2 closure. No significant differences were observed in the preoperative OCT variables between the two closure types. Eyes with type 1 closure showed a significantly improved visual acuity (0.70±0.10, range 0.50-0.80) compared to those with type 2 closure (0.90±0.12, range 0.80-1.00, P=0.014). CONCLUSION: The MH hydromassage technique demonstrates promising results, achieving acceptable closure rates in cases of large or persistent MH. This technique may serve as an effective adjunctive maneuver during challenging MH surgery.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38717387

RESUMO

Flexible pressure sensors have attracted great interest as they play an important role in various fields such as health monitoring and human-machine interactions. The design of the pressure sensors still faces challenges in achieving a high sensitivity for a wide sensing range, and the interference of water restricts the applications of the sensors. Herein, we developed a graphene-polydimethylsiloxane film combining a hierarchical surface with nanowrinkles on it and a hollow structure. The microstructure design of the composite can be facilely controlled to improve the sensing and hydrophobic performance by tailoring the microsphere building units. Attributed to the irregular surface and hollow structure of the sensing layer, the optimized sensor exhibits a superior sensitivity of 1085 kPa-1 in a 50 kPa linear range. For practical applications, the nanowrinkles on the surface of the microspheres and the polymer coating endow the composite with waterproof properties. Inspired by the dual receptors of the skin, two designed microstructured films can simply integrate into one with double-sided microstructures. The sensing performance and the water-repellence property allow the sensor to detect physiological signals under both ambient and underwater conditions. Furthermore, underwater stimuli detection and communication are demonstrated. This method of fabricating a flexible sensor shows great potential in wearable and robotic fields.

3.
J Am Chem Soc ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739877

RESUMO

Transition-metal-catalyzed C-Si/Ge cross-coupling offers promising avenues for the synthesis of organosilanes/organogermanes, yet it is fraught with long-standing challenges. A Ni/Ti-catalyzed strategy is reported here, allowing the use of disubstituted malononitriles as tertiary C(sp3) coupling partners to couple with chlorosilanes and chlorogermanes, respectively. This method enables the catalytic cleavage of the C(sp3)-CN bond of the quaternary carbon followed by the formation of C(sp3)-Si/C(sp3)-Ge bonds from ubiquitously available starting materials. The efficiency and generality are showcased by a broad scope for both of the coupling partners, therefore holding the potential to synthesize structurally diverse quaternary organosilanes and organogermanes that were difficult to access previously.

5.
Materials (Basel) ; 17(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38730927

RESUMO

A new approach is proposed that identifies three different zones of the Si-rich network structure (the cellular structure) in laser powder bed fused (LPBF) AlSi10Mg alloy, based on the variation in morphology, grain growth transition, and melt pool solidification conditions. The three identified zones are denoted in the present work as the liquid solidification zone (LSZ), the mushy solidification zone (MSZ), and the heat affected zone (HAZ). The LSZ is the result of liquid-solid transformation, showing small planar growth at the boundary and large cellular growth in the center, while the MSZ is related to a semisolid reaction, and the HAZ arises from a short-time aging process. The boundary between the LSZ and MSZ is identified by the change of grain growth direction and the Si-rich network advancing direction. The boundary between MSZ and HAZ is identified by the start of the breakdown of the Si-rich network. In addition, it is found that the fracture is generated in and propagates along the HAZ during tensile tests.

6.
Analyst ; 149(10): 2905-2914, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38572989

RESUMO

High cost, inherent destabilization, and intricate fixing of enzyme molecules are the main drawbacks of enzyme-based creatinine sensors. The design of a low-cost, stabilizable, and enzyme-free creatinine sensing probe is essential to address these limitations. In this work, an integrated three-dimensional (3D) free-standing electrode was designed to serve as a non-enzymatic creatinine sensing platform and was fabricated by rapid electrodeposition of a dense copper nanoparticle film on nickel foam (Cu NP film/NF). This low-cost, stable, easy-to-fabricate, and binder-free Cu NP film/NF electrode has abundant active sites and excellent electrochemical performance. Cyclic voltammetry measurements show a wide linear range (0.25-24 mM), low detection limit (0.17 mM), and high sensitivity (306 µA mM-1 cm-2). The developed sensor shows high recovery of creatinine concentration in real urine. Besides, it has better specificity, reproducibility, and robustness in detecting creatinine. These excellent results suggest that a non-enzymatic creatinine sensor based on an integrated 3D free-standing Cu NP film/NF electrode has good potential for non-invasive detection of urinary creatinine.


Assuntos
Cobre , Creatinina , Eletrodos , Galvanoplastia , Limite de Detecção , Nanopartículas Metálicas , Níquel , Cobre/química , Níquel/química , Creatinina/urina , Creatinina/química , Nanopartículas Metálicas/química , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Reprodutibilidade dos Testes
7.
J Hazard Mater ; 471: 134355, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38643583

RESUMO

Straw addition markedly affects the soil aggregates and microbial community structure. However, its influence on the profile of antibiotic resistance genes (ARGs), which are likely associated with changes in bacterial life strategies, remains unclear. To clarify this issue, a soil microcosm experiment was incubated under aerobic (WS) or anaerobic (AnWS) conditions after straw addition, and metagenomic sequencing was used to characterise ARGs and bacterial communities in soil aggregates. The results showed that straw addition shifted the bacterial life strategies from K- to r-strategists in all aggregates, and the aerobic and anaerobic conditions stimulated the growth of aerobic and anaerobic r-strategist bacteria, respectively. The WS decreased the relative abundances of dominant ARGs such as QnrS5, whereas the AnWS increased their abundance. After straw addition, the macroaggregates consistently exhibited a higher number of significantly altered bacteria and ARGs than the silt+clay fractions. Network analysis revealed that the WS increased the number of aerobic r-strategist bacterial nodes and fostered more interactions between r-and K-strategist bacteria, thus promoting ARGs prevalence, whereas AnWS exhibited an opposite trend. These findings provide a new perspective for understanding the fate of ARGs and their controlling factors in soil ecosystems after straw addition. ENVIRONMENTAL IMPLICATIONS: Straw soil amendment has been recommended to mitigate soil fertility degradation, improve soil structure, and ultimately increase crop yields. However, our findings highlight the importance of the elevated prevalence of ARGs associated with r-strategist bacteria in macroaggregates following the addition of organic matter, particularly fresh substrates. In addition, when assessing the environmental risk posed by ARGs in soil that receives crop straw, it is essential to account for the soil moisture content. This is because the species of r-strategist bacteria that thrive under aerobic and anaerobic conditions play a dominant role in the dissemination and accumulation of ARG.


Assuntos
Bactérias , Microbiologia do Solo , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Solo/química , Aerobiose , Anaerobiose , Farmacorresistência Bacteriana/genética
8.
J Pharm Anal ; 14(4): 100905, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665224

RESUMO

Epigenomic imbalance drives abnormal transcriptional processes, promoting the onset and progression of cancer. Although defective gene regulation generally affects carcinogenesis and tumor suppression networks, tumor immunogenicity and immune cells involved in antitumor responses may also be affected by epigenomic changes, which may have significant implications for the development and application of epigenetic therapy, cancer immunotherapy, and their combinations. Herein, we focus on the impact of epigenetic regulation on tumor immune cell function and the role of key abnormal epigenetic processes, DNA methylation, histone post-translational modification, and chromatin structure in tumor immunogenicity, and introduce these epigenetic research methods. We emphasize the value of small-molecule inhibitors of epigenetic modulators in enhancing antitumor immune responses and discuss the challenges of developing treatment plans that combine epigenetic therapy and immunotherapy through the complex interaction between cancer epigenetics and cancer immunology.

9.
Comput Struct Biotechnol J ; 23: 1288-1297, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38560279

RESUMO

Carbon materials are commonly used for soil carbon sequestration and fertilization, which can also affect crop growth by manipulating the rhizosphere bacterial community. However, the comparison of the differences between active carbon (e.g., organic fertilizers) and stable carbon (e.g., biochar) on rhizosphere microdomains is still unclear. Hence, a trial was implemented to explore the influence of control (CK, no fertilizer; NPK, chemical fertilizer), organic fertilizer (CF-O, organic fertilizer; CF-BO, biochar-based organic fertilizer) and biochar material (CF-B, perishable garbage biochar; CF-PMB, pig manure biochar) on the diversity, composition, and interaction of rice rhizosphere bacterial community through 16 S rRNA gene high-throughput sequencing. Our results demonstrate that organic fertilizer increases bacterial alpha-diversity compared to no-carbon supply treatment to the extend, whereas biochar has the opposite effect. The rhizosphere bacterial community composition showed pronounced variations among the various fertilization treatments. The relative abundance in Firmicutes decreased with organic fertilizer application, whereas that in Chloroflexi and Actinobacteria decreased with biochar application. Bacterial network analysis demonstrate that organic fertilizer enhances the complexity and key taxa of bacterial interactions, while biochar exhibits an opposing trend. The findings of our study indicate that organic fertilizer may contribute to a positive and advantageous impact on bacterial diversity and interaction in rice rhizosphere, whereas the influence of biochar is not as favorable and constructive. This study lays the foundation for elucidating the fate of the rhizosphere bacterial community following different carbon material inputs in the context of sustainable agricultural development.

10.
Microbiol Res ; 284: 127732, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38677265

RESUMO

The HOG MAPK pathway mediates diverse cellular and physiological processes, including osmoregulation and fungicide sensitivity, in phytopathogenic fungi. However, the molecular mechanisms underlying HOG MAPK pathway-associated stress homeostasis and pathophysiological developmental events are poorly understood. Here, we demonstrated that the oxalate decarboxylase CsOxdC3 in Colletotrichum siamense interacts with the protein kinase kinase CsPbs2, a component of the HOG MAPK pathway. The expression of the CsOxdC3 gene was significantly suppressed in response to phenylpyrrole and tebuconazole fungicide treatments, while that of CsPbs2 was upregulated by phenylpyrrole and not affected by tebuconazole. We showed that targeted gene deletion of CsOxdC3 suppressed mycelial growth, reduced conidial length, and triggered a marginal reduction in the sporulation characteristics of the ΔCsOxdC3 strains. Interestingly, the ΔCsOxdC3 strain was significantly sensitive to fungicides, including phenylpyrrole and tebuconazole, while the CsPbs2-defective strain was sensitive to tebuconazole but resistant to phenylpyrrole. Additionally, infection assessment revealed a significant reduction in the virulence of the ΔCsOxdC3 strains when inoculated on the leaves of rubber tree (Hevea brasiliensis). From these observations, we inferred that CsOxdC3 crucially modulates HOG MAPK pathway-dependent processes, including morphogenesis, stress homeostasis, fungicide resistance, and virulence, in C. siamense by facilitating direct physical interactions with CsPbs2. This study provides insights into the molecular regulators of the HOG MAPK pathway and underscores the potential of deploying OxdCs as potent targets for developing fungicides.

11.
J Hazard Mater ; 470: 134165, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574660

RESUMO

It has been reported that N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), a derivative of the tire antioxidant, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), exhibits acute toxicity towards organisms. However, the possible reproductive toxicity of 6PPD-Q in mammals has rarely been reported. In this study, the effects of 6PPD-Q on the reproductive toxicity of C57Bl/6 male mice were assessed after exposure to 6PPD-Q for 40 days at 4 mg/kg body weight (bw). Exposure to 6PPD-Q not only led to a decrease in testosterone levels but also adversely affected semen quality and in vitro fertilization (IVF) outcomes, thereby indicating impaired male fertility resulting from 6PPD-Q exposure. Additionally, transcriptomic and metabolomic analyses revealed that 6PPD-Q elicited differential expression of genes and metabolites primarily enriched in spermatogenesis, apoptosis, arginine biosynthesis, and sphingolipid metabolism in the testes of mice. In conclusion, our study reveals the toxicity of 6PPD-Q on the reproductive capacity concerning baseline endocrine disorders, sperm quality, germ cell apoptosis, and the sphingolipid signaling pathway in mice. These findings contribute to an enhanced understanding of the health hazards posed by 6PPD-Q to mammals, thereby facilitating the development of more robust safety regulations governing the utilization and disposal of rubber products.


Assuntos
Camundongos Endogâmicos C57BL , Espermatozoides , Testosterona , Animais , Masculino , Espermatozoides/efeitos dos fármacos , Testosterona/sangue , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Fenilenodiaminas/toxicidade , Borracha/toxicidade , Apoptose/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Camundongos , Reprodução/efeitos dos fármacos , Análise do Sêmen
12.
World J Gastrointest Oncol ; 16(3): 1029-1045, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38577446

RESUMO

BACKGROUND: CALD1 has been discovered to be abnormally expressed in a variety of malignant tumors, including gastric cancer (GC), and is associated with tumor progression and immune infiltration; however, the roles and mechanisms of CALD1 in epithelial-mesenchymal transition (EMT) in GC are unknown. AIM: To investigate the role and mechanism of CALD1 in GC progression, invasion, and migration. METHODS: In this study, the relationship between CALD1 and GC, as well as the possible network regulatory mechanisms of CALD1, was investigated by bioinformatics and validated by experiments. CALD1-siRNA was synthesized and used to transfect GC cells. Cell activity was measured using the CCK-8 method, cell migration and invasive ability were measured using wound healing assay and Transwell assay, and the expression levels of relevant genes and proteins in each group of cells were measured using qRT-PCR and Western blot. A GC cell xenograft model was established to verify the results of in vitro experiments. RESULTS: Bioinformatics results showed that CALD1 was highly expressed in GC tissues, and CALD1 was significantly higher in EMT-type GC tissues than in tissues of other types of GC. The prognosis of patients with high expression of CALD1 was worse than that of patients with low expression, and a prognostic model was constructed and evaluated. The experimental results were consistent with the results of the bioinformatics analysis. The expression level of CALD1 in GC cell lines was all higher than that in gastric epithelial cell line GES-1, with the strongest expression found in AGS and MKN45 cells. Cell activity was significantly reduced after CALD1-siRNA transfection of AGS and MKN45 cells. The ability of AGS and MKN45 cells to migrate and invade was reduced after CALD1-siRNA transfection, and the related mRNA and protein expression was altered. According to bioinformatics findings in GC samples, the CALD1 gene was significantly associated with the expression of members of the PI3K-AKT-mTOR signaling pathway as well as the EMT signaling pathway, and was closely related to the PI3K-Akt signaling pathway. Experimental validation revealed that upregulation of CALD1 increased the expression of PI3K, p-AKT, and p-mTOR, members of the PI3K-Akt pathway,while decreasing the expression of PTEN; PI3K-Akt inhibitor treatment decreased the expression of PI3K, p-AKT, and p-mTOR in cells overexpressing CALD1 (still higher than that in the normal group), but increased the expression of PTEN (still lower than that in the normal group). CCK-8 results revealed that the effect of CALD1 on tumor cell activity was decreased by the addition of the inhibitor. Scratch and Transwell experiments showed that the effect of CALD1 on tumor cell migration and invasion was weakened by the addition of the PI3K-Akt inhibitor. The mRNA and protein levels of EMT-related genes in AGS and MKN45 cells were greatly altered by the overexpression of CALD1, whereas the effect of overexpression of CALD1 was significantly weakened by the addition of the PI3K-Akt inhibitor. Animal experiments showed that tumour growth was slow after inhibition of CALD1, and the expression of some PI3K-Akt and EMT pathway proteins was altered. CONCLUSION: Increased expression of CALD1 is a key factor in the progression, invasion, and metastasis of GC, which may be associated with regulating the PI3K-Akt pathway to promote EMT.

13.
Sci Rep ; 14(1): 9604, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671179

RESUMO

Traffic flow prediction based on spatial-temporal data plays a vital role in traffic management. However, it still faces serious challenges due to the complex spatial-temporal correlation in nonlinear spatial-temporal data. Some previous methods have limited ability to capture spatial-temporal correlation, and ignore the quadratic complexity problem in the traditional attention mechanism. To this end, we propose a novel spatial-temporal combination and multi-head flow-attention network (STCMFA) to model the spatial-temporal correlation in road networks. Firstly, we design a temporal sequence multi-head flow attention (TS-MFA), in which the unique source competition mechanism and sink allocation mechanism make the model avoid attention degradation without being affected by inductive biases. Secondly, we use GRU instead of the linear layer in traditional attention to map the input sequence, which further enhances the temporal modeling ability of the model. Finally, we combine the GCN with the TS-MFA module to capture the spatial-temporal correlation, and introduce residual mechanism and feature aggregation strategy to further improve the performance of STCMFA. Extensive experiments on four real-world traffic datasets show that our model has excellent performance and is always significantly better than other baselines.

14.
J Virol Methods ; 327: 114932, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582378

RESUMO

Senecavirus A (SVA) is a newly identified picornavirus associated with swine vesicular disease and neonatal mortality. The development of an SVA incorporating an exogenous reporter gene provides a powerful tool for viral research. In this study, we successfully constructed a recombinant SVA expressing Gaussia Luciferase (Gluc), termed rSVA-Gluc. The growth kinetics of rSVA-Gluc in BHK-21 cells were found to be comparable to those of the parental virus, and Gluc activity paralleled the virus growth curve. Genetic analysis revealed stable inheritance of the inserted reporter protein genes for at least six generations. We evaluated the utility of rSVA-Gluc in antiviral drug screening, and the results highlighted its potential as an effective tool for such purposes against SVA. DATA AVAILABILITY STATEMENT: The data that support the findings of this study are available on request from the corresponding author.

15.
Korean J Physiol Pharmacol ; 28(3): 183-196, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682167

RESUMO

Ferroptosis is a novel mechanism of programmed cell death, characterized by intracellular iron overload, intensified lipid peroxidation, and abnormal accumulation of reactive oxygen species, which ultimately resulting in cell membrane impairment and demise. Research has revealed that cancer cells exhibit a greater demand for iron compared to normal cells, indicating a potential susceptibility of cancer cells to ferroptosis. Stomach and colorectal cancers are common gastrointestinal malignancies, and their elevated occurrence and mortality rates render them a global health concern. Despite significant advancements in medical treatments, certain unfavorable consequences and drug resistance persist. Consequently, directing attention towards the phenomenon of ferroptosis in gastric and colorectal cancers holds promise for enhancing therapeutic efficacy. This review aims to elucidate the intricate cellular metabolism associated with ferroptosis, encompassing lipid and amino acid metabolism, as well as iron metabolic processes. Furthermore, the significance of ferroptosis in the context of gastric and colorectal cancer is thoroughly examined and discussed.

16.
J Environ Manage ; 358: 120834, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631170

RESUMO

The organic matter (OM) and nitrogen in Fresh leachate (FL) from waste compression sites pose environmental and health risks. Even though the constructed wetland (CW) can efficiently remove these pollutants, the molecular-level transformations of dissolved OM (DOM) in FL remain uncertain. This study reports the molecular dynamics of DOM and nitrogen removal during FL treatment in CWs. Two lab-scale vertical-flow CW systems were employed: one using only sand as substrates (act as a control, CW-C) and the other employing an equal mixture of manganese ore powder and sand (experimental, CW-M). Over 488 days of operation, CW-M exhibited significantly higher removal rates for chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and dissolved organic matter (represented by dissolved organic carbon, DOC) at 98.2 ± 2.5%, 99.2 ± 1.4%, and 97.9 ± 1.9%, respectively, in contrast to CW-C (92.8 ± 6.8%, 77.1 ± 28.1%, and 74.7 ± 9.5%). The three-dimensional fluorescence excitation-emission matrix (3D-EEM) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analyses unveiled that the influent DOM was predominantly composed of readily biodegradable protein-like substances with high carbon content and low unsaturation. Throughout treatment, it led to the degradation of low O/C and high H/C compounds, resulting in the formation of DOM with higher unsaturation and aromaticity, resembling humic-like substances. CW-M showcased a distinct DOM composition, characterized by lower carbon content yet higher unsaturation and aromaticity than CW-C. The study also identified the presence of Gammaproteobacteria, reported as Mn-oxidizing bacteria with significantly higher abundance in the upper and middle layers of CW-M, facilitating manganese cycling and improving DOM removal. Key pathways contributing to DOM removal encompassed adsorption, catalytic oxidation by manganese oxides, and microbial degradation. This study offers novel insights into DOM transformation and removal from FL during CW treatment, which will facilitate better design and enhanced performance.


Assuntos
Manganês , Poluentes Químicos da Água , Áreas Alagadas , Manganês/química , Poluentes Químicos da Água/química , Nitrogênio/química , Análise da Demanda Biológica de Oxigênio
17.
Biomed Pharmacother ; 174: 116446, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513599

RESUMO

Herein, we constructed innovative reduction-sensitive and targeted gelatin-based micelles for doxorubicin (DOX) delivery in tumor therapy. AS1411 aptamer-modified gelatin-ss-tocopherol succinate (AGSST) and the control GSST without AS1411 modification were synthesized and characterized. Antitumor drug DOX-containing AGSST (AGSST-D) and GSST-D nanoparticles were prepared, and their shapes were almost spherical. Reduction-responsive characteristics of DOX release in vitro were revealed in AGSST-D and GSST-D. Compared with non-targeted GSST-D, AGSST-D demonstrated better intracellular uptake and stronger cytotoxicity against nucleolin-overexpressed A549 cells. Importantly, AGSST-D micelles showed more effective killing activity in A549-bearing mice than GSST-D and DOX⋅HCl. It was revealed that AGSST-D micelles had no obvious systemic toxicity. Overall, AGSST micelles would have the potential to be an effective drug carrier for targeted tumor therapy.


Assuntos
Aptâmeros de Nucleotídeos , Doxorrubicina , Sistemas de Liberação de Medicamentos , Gelatina , Micelas , Oligodesoxirribonucleotídeos , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Animais , Humanos , Aptâmeros de Nucleotídeos/farmacologia , Gelatina/química , Células A549 , Sistemas de Liberação de Medicamentos/métodos , Camundongos , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/farmacologia , Camundongos Nus , Camundongos Endogâmicos BALB C , Portadores de Fármacos/química , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Liberação Controlada de Fármacos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo
18.
Opt Lett ; 49(6): 1552-1555, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489448

RESUMO

We propose an asymmetry transmissive (AT) Helmholtz resonator metamaterial to interact with dual incidences of different polarizations from opposite directions to achieve coherent perfect absorption at a terahertz regime. More specifically, the proposed design will solely allow the x-polarized incidence tunnel into the Helmholtz resonator cavity array with roughly half the energy reflected. Meanwhile, the transmitted fields will be converted into the y-polarized counterparts so as to go out through the metamaterial and finally coherent canceled with the partially reflected fields of the other incidence. Our design, introducing the Helmholtz resonator array in the electromagnetics with an extension of the principle of polarization conversion under the coherent perfect absorption, should pave the way for the quest of building up more advanced wave trapping meta-devices for various applications in different disciplines.

19.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542068

RESUMO

The genus Neopestalotiopsis consists of obligate parasites that cause ring spot, scab, and leaf blight diseases in higher plant species. We assembled the three complete mitogenomes for the guava fruit ring spot pathogen, Neopestalotiopsis cubana. The mitogenomes are circular, with sizes of 38,666 bp, 33,846 bp, and 32,593 bp. The comparative analyses with Pestalotiopsis fici showed that N. cubana differs greatly from it in the length of the mitogenomes and the number of introns. Moreover, they showed significant differences in the gene content and tRNAs. The two genera showed little difference in gene skewness and codon preference for core protein-coding genes (PCGs). We compared gene sequencing in the mitogenomes of the order Xylariales and found large-scale gene rearrangement events, such as gene translocations and the duplication of tRNAs. N. cubana shows a unique evolutionary position in the phylum Ascomycota constructed in phylogenetic analyses. We also found a more concentrated distribution of evolutionary pressures on the PCGs of Neopestalotiopsis in the phylum Ascomycota and that they are under little selective pressure compared to other species and are subjected to purifying selection. This study explores the evolutionary dynamics of the mitogenomes of Neopestalotiopsis and provides important support for genetic and taxonomic studies.


Assuntos
Genoma Mitocondrial , Xylariales , Filogenia , Xylariales/genética , RNA de Transferência/genética , Íntrons
20.
Water Res ; 255: 121466, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493741

RESUMO

Environmental occurrence of perfluorobutane sulfonamide (PFBSA) has only been recently discovered. The current knowledge regarding the occurrence and environmental behaviors of PFBSA in the marine environment is still relatively limited. In this study, PFBSA and other 37 poly- and perfluoroalkyl substances were analyzed in seawater (n = 43), sediment (n = 43), and marine fish (n = 176) samples collected from East China Sea and Antarctic Ocean. PFBSA was detected in > 90% of seawater from East China Sea and Antarctic Ocean, with the concentrations of 1.0 - 19 ng/L and < LOD-228 pg/L, respectively. The field-based mean log-transformed sediment-seawater partitioning coefficients of PFBSA were 1.6 ± 0.19 L/kg dw and 1.1 ± 0.19 L/kg dw in East China Sea and Antarctic Ocean, respectively, which are lower than that of perfluorooctanoate and perfluorooctane sulfonate. This indicates its long-range transport potential in global oceans with ocean currents. The mean log-transformed bioaccumulation factor values of PFBSA determined in the multiple species of whole-body marine fishes from East China Sea and Antarctic Ocean were 2.3 L/kg ww and 2.4 L/kg ww, respectively, which are comparable to that of perfluoroheptanoate (2.3 L/kg ww) in marine fishes from East China Sea. We did not observe an obvious biomagnification or biodilution of PFBSA along the marine food chain in East China Sea or Antarctic Ocean. This study provides the first data on the environmental behaviors of PFBSA in the marine environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...