Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(23): e2313393, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573779

RESUMO

The meta-stable active layer morphology of organic solar cells (OSCs) is identified as the main cause of the rapid burn-in loss of power conversion efficiency (PCE) during long-term device operation. However, effective strategies to eliminate the associated loss mechanisms from the initial stage of device operation are still lacking, especially for high-efficiency material systems. Herein, the introduction of molecularly engineered dimer acceptors with adjustable thermal transition properties into the active layer of OSCs to serve as supramolecular stabilizers for regulating the thermal transitions and optimizing the crystallization of the absorber composites is reported. By establishing intimate π-π interactions with small-molecule acceptors, these stabilizers can effectively reduce the trap-state density (Nt) in the devices to achieve excellent PCEs over 19%. More importantly, the low Nt associated with an initially optimized morphology can be maintained under external stresses to significantly reduce the PCE burn-in loss in devices. This research reveals a judicious approach to improving OPV stability by establishing a comprehensive correlation between material properties, active-layer morphology, and device performance, for developing burn-in-free OSCs.

2.
Nat Commun ; 15(1): 1212, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331998

RESUMO

Polymerization of Y6-type acceptor molecules leads to bulk-heterojunction organic solar cells with both high power-conversion efficiency and device stability, but the underlying mechanism remains unclear. Here we show that the exciton recombination dynamics of polymerized Y6-type acceptors (Y6-PAs) strongly depends on the degree of aggregation. While the fast exciton recombination rate in aggregated Y6-PA competes with electron-hole separation at the donor-acceptor (D-A) interface, the much-suppressed exciton recombination rate in dispersed Y6-PA is sufficient to allow efficient free charge generation. Indeed, our experimental results and theoretical simulations reveal that Y6-PAs have larger miscibility with the donor polymer than Y6-type small molecular acceptors, leading to D-A percolation that effectively prevents the formation of Y6-PA aggregates at the interface. Besides enabling high charge generation efficiency, the interfacial D-A percolation also improves the thermodynamic stability of the blend morphology, as evident by the reduced device "burn-in" loss upon solar illumination.

3.
Huan Jing Ke Xue ; 44(12): 6664-6679, 2023 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-38098393

RESUMO

Urbanization is a major source of carbon emissions. A quantitative study on the dynamic relationship between urbanization and its morphological characteristics and carbon emissions is crucial for formulating urban carbon emission reduction policies. Based on the carbon metabolism model, the carbon emissions at the country level in Chang-Zhu-Tan from 1995 to 2020 were calculated. The Tapio decoupling model was used to explore the decoupling relationship between the carbon emissions of Chang-Zhu-Tan and urban land, and a geographically and temporally weighted regression(GTWR) model was used to analyze the impact mechanism of urban spatial morphology on carbon emissions. The following conclusions were drawn:① carbon emissions at the county level in the study area formed a clustered distribution centered on the city jurisdiction and showed a trend of diffusion from year to year. Compared with those in 1995, there were seven new high carbon emission districts in 2020, all of which belonged to Changsha. ② From 1995-2020, the research area as a whole changed from mainly strong decoupling to mainly dilated negative decoupling, and the spatial decoupling state fluctuated back and forth between the decoupling and negative decoupling. By 2020, except for the seven regions with the uncoupling state regressing, all of them reached the uncoupling state or were close to the uncoupling state. ③ Urban patch area(CA), urban patch number(NP), and patch combination degree(COHESION) were positively correlated with urban carbon emissions, whereas landscape shape index(LSI), maximum patch index(LPI), and Euclidean distance mean(ENN_MN) were negatively correlated with urban carbon emissions, and the impact of different urban form indicators on carbon emissions had significant spatial heterogeneity.

4.
Huan Jing Ke Xue ; 44(1): 572-582, 2023 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-36635845

RESUMO

Research on the spatiotemporal characteristics and influencing factors of environmental emergency incidents in China in recent decades can improve the effectiveness and accuracy of risk supervision of environmental emergency incidents. Based on the data of environmental emergency incidents in 31 provincial regions in China from 1991 to 2018, this study used spatial autocorrelation analysis and a geographically and temporally weighted regression model to analyze the spatial dependence of environmental emergency incidents and the temporal and spatial heterogeneity of influencing factors. The results showed that: ① there was a significant positive spatial correlation between environmental emergency incidents during 1991-1994 and 2001-2014, and the spatial agglomeration was gradually increasing, that is, environmental emergency incidents existed in the provinces of China; clearly, the space depended on the characteristics and was not completely random. ② There was an unbalanced development pattern of environmental emergency incidents in China. The provinces with "L-L" agglomeration were concentrated in the western and northeastern regions, and the number increased and then decreased; by contrast, the ones with "H-H" agglomeration shifted from the east and south to the central and western regions, and the number increased following the decrease. The role of environmental emergency incident in different provincial regions in the spatial agglomeration was different and constantly changing. ③ The effects of various influencing factors on environmental emergency incidentshad obvious temporal and spatial heterogeneity in different periods and different provinces. The impact of the level of economic development on environmental emergency incidents was shown as a "negative-positive-negative" pattern. The impact of industrial structure on environmental emergency incidents was shown as a "negative-positive" pattern. The overall impact of pollution emissions on environmental emergency incident presented a "positive-negative-positive" pattern. Environmental letters and visits had a positive impact on the occurrence of environmental emergency incidents. The negative impact of the legal environment on environmental emergency incidents was gradually weakening. The negative impact of pollution control on environmental emergency incidents at the provincial level has gradually become apparent.


Assuntos
Poluição Ambiental , Indústrias , China/epidemiologia , Análise Espacial , Desenvolvimento Econômico
5.
Plants (Basel) ; 11(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36559638

RESUMO

The nitrogen isotope composition of plants (δ15N) can comprehensively reflect information on climate change and ecosystems' nitrogen cycle. By collecting common herbs and soil samples along the 400 mm isoline of mean annual precipitation (MAP) in the agro-pastoral zone of North China (APZNC) and measuring their δ15N values, the statistical characteristics of foliar δ15N of herbs and the responses of foliar δ15N to the MAP and mean annual temperature (MAT) were analyzed. The results showed that: (1) the δ15N values of all herbs investigated varied from -5.5% to 15.25%. Among them, the δ15N value range of C3 herbs (-5.5~15.00%) was wider than that of C4 herbs (-2.17~15.25%), but the average value (3.27%) of C3 herbs was significantly lower than that of C4 herbaceous plants (5.55%). This difference provides an important method for identifying plants of different photosynthetic types by nitrogen isotope technology. (2) Along the transect from northeast to southwest, the δ15N of both C3 and C4 herbs decreased with the increase in the MAP, but not significantly for C3 herbs. The inverse relationship between the nitrogen isotopic signatures of herbs and MAP is consistent with previous studies. However, the MAP in the APZNC is found to only explain a small amount of the observed variance in the δ15N herbs (C3 herbs: 10.40%; C4 herbs: 25.03%). (3) A strong negative relationship was found between δ15N of herbs and MAT across the transect (C3 herbs: -0.368%/°C; C4 herbs: -0.381%/°C), which was contrary to the global pattern and some regional patterns. There was no significant difference in the δ15N responses of two different photosynthetic herbs to temperature, but the effect of temperature on the variances of δ15N of C3 and C4 herbs was significantly greater than that of precipitation. This suggests that temperature is a key factor affecting foliar δ15N of herbs in this transect. The above findings may be of value to global change researchers studying the processes of the nitrogen cycle and gaining an insight into climate dynamics of the past.

6.
PLoS One ; 17(10): e0265795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36315521

RESUMO

Identifying the impact path of climate and soil factors on soil δ15N is very crucial for better understanding the N turnover in soils and the integrated information about ecosystem N cycling. Many studies have showed that climate and soil variables influence the change of soil δ15N. However, most of the existing studies focused on the overall impact of factor on soil δ15N, without distinguishing between the direct and indirect effect. Although scholars have studied the relationships among temperature, precipitation, soil N, soil pH, and soil δ15N rather than estimating all the causal relationships simultaneously. To answer the above-mentioned questions, a regional-scale soil collection was conducted across a temperate grassland in northern China. Meanwhile, a PLS-PATH analysis was utilized to evaluate the direct and indirect effects of various factors on soil δ15N and to explore the causal relationships among variables. The results showed that along the transect, mean annual precipitation (MAP) and mean annual temperature (MAT) directly and significantly reduced soil δ15N, and indirectly affected soil δ15N through their effects on soil pH, soil clay, soil N and soil C/N. Soil C/N ratio has a significant direct impact on soil δ15N with a negative correlation. Soil clay, soil N content, and soil pH have a total positive effect on soil δ15N, but the total positive impact of soil pH is very weak because it has a negative indirect impact on soil δ15N by affecting soil clay, soil N and soil C/N ratio. The total influence is, in order, MAP > MAT > soil C/N > soil clay > soil N > soil pH (in absolute value). The above results will provide valuable information about ecosystem N cycle in temperate grassland of northern China.


Assuntos
Pradaria , Solo , Solo/química , Ecossistema , Argila , China , Carbono/análise
7.
Environ Sci Pollut Res Int ; 29(48): 72140-72158, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35353305

RESUMO

Facing the growing problem of carbon emission pollution, the scientific and reasonable division of environmental management power between governments is the premise and institutional foundation for realizing China's carbon emission reduction target in 2030. In this article, we directly assess the degree of environmental decentralization according to the allocation of environmental managers among different levels of government. By incorporating fiscal decentralization indicators, the provincial panel data and dynamic spatial econometric model are used to empirically test the impact of environmental decentralization on carbon emissions from a spatial perspective. The results show that (1) China's provincial carbon emissions have significant inertia dependence and spatial path dependence. The increase (decrease) of provincial carbon emissions will lead to the increase (decrease) of carbon emissions in neighboring regions. (2) At the national level, environmental decentralization, environmental administrative decentralization, and environmental monitoring decentralization significantly reduce China's carbon emissions, while environmental supervision decentralization and fiscal decentralization significantly increase carbon emissions. Similarly, the interaction of environmental decentralization and its decomposition indicators and fiscal decentralization also significantly promotes carbon emissions, and the impact is related to the types of environmental management decentralization. (3) The carbon emission effects of environmental decentralization in different regions are heterogeneous. The inhibition effect of environmental decentralization, environmental administrative decentralization, and environmental monitoring decentralization on carbon emissions in the western region is significantly greater than that in the eastern and central regions, but the inhibitory effect of the interaction of environmental decentralization and its decomposition index and fiscal decentralization on carbon emissions in the eastern region was significantly stronger than that in the central and western regions. The above results provide theoretical support for China to construct a differentiated carbon emission environmental management system from two aspects of regional differences and environmental management power categories.


Assuntos
Carbono , Desenvolvimento Econômico , Carbono/análise , Dióxido de Carbono/análise , China , Poluição Ambiental , Modelos Econométricos , Política
8.
Environ Sci Pollut Res Int ; 29(32): 48348-48357, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35188610

RESUMO

CdS-AgO@g-C3N4 nanocomposites were successfully synthesized and characterized by XRD, N2 physical adsorption, XPS, SEM, TEM, EDX, and UV-Vis DRS (various technical means). The adsorption light range of as-prepared materials could extend to the whole visible light region with the addition of Ag. Silver can act as a bridge to facilitate the separation of electrons and holes, thereby greatly enhancing the photocatalytic activity of CdS-AgO@g-C3N4, enabling the maximum degradation efficiency of salicylic acid in water to reach 92.8% under visible light. Peroxy radical is the most important radical in the photocatalytic reaction process, followed by electron and hole, while hydroxyl radical has almost no effect. In addition, the mechanism of photocatalytic process was also explored.


Assuntos
Luz , Nanocompostos , Adsorção , Catálise , Prata
9.
Huan Jing Ke Xue ; 41(12): 5236-5244, 2020 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-33374039

RESUMO

It is of great significance for joint prevention and control of air pollution to understand the spatial and temporal differentiation characteristics and regional driving factors of PM2.5 in China. In this study, from a multi-scale perspective, the spatial pattern analysis and geographical detectors are used to explore the spatial and temporal distribution pattern and causes of PM2.5 pollution in China mainland from 2011 to 2017. The results show that:① the annual average PM2.5 concentration is relatively stable from 2011 to 2017, and there is no obvious trend. The change characteristics of regional PM2.5 are similar to those of national PM2.5, showing a "W" shaped fluctuation. Overall, the order of pollution degree from high to low is:central, eastern, western, and northeastern. ② From the spatial pattern analysis results, we can see that the high-value cluster mainly appears in east China, middle China, and southwest of Xinjiang, while the low-value cluster appears in Qinghai-Tibet, Yunnan, Guizhou, Plateau, and Daxinganling regions. ③ The results of geographic detector analysis show that the population factor is the leading factor nationally; meanwhile, the industrial, energy consumption, and traffic factors all contribute to the distribution pattern of PM2.5 in varying degrees. Regionally, besides the population factor, the proportion of secondary production and urban green space rate have the greatest impact on the northeast, the industrial smoke and dust and road area in the east, and the total industrial electricity and buses in the central area. The impact of social and economic factors does not significantly affect the PM2.5 in the western region.

10.
Artigo em Inglês | MEDLINE | ID: mdl-31212685

RESUMO

With the advancement of urbanization, the harm caused to human health by PM2.5 pollution has been receiving increasing attention worldwide. In order to increase public awareness and understanding of the damage caused by PM2.5 in the air and gain the attention of relevant management departments, Changsha City is used as the research object, and the environmental quality data and public health data of Changsha City from 2013 to 2017 are used. All-cause death, respiratory death, cardiovascular death, chronic bronchitis, and asthma were selected as the endpoints of PM2.5 pollution health effects, according to an exposure-response coefficient, Poisson regression model, and health-impact-assessment-related methods (the Human Capital Approach, the Willingness to Pay Approach, and the Cost of Illness Approach), assessing the health loss and economic loss associated with PM2.5. The results show that the pollution of PM2.5 in Changsha City is serious, which has resulted in extensive health hazards and economic losses to local residents. From 2013 to 2017, when annual average PM2.5 concentrations fell to 10 µg/m3, the total annual losses from the five health-effect endpoints were $2788.41 million, $2123.18 million, $1657.29 million, $1402.90 million, and $1419.92 million, respectively. The proportion of Gross Domestic Product (GDP) in the current year was 2.69%, 1.87%, 1.34%, 1.04% and 0.93%, respectively. Furthermore, when the concentration of PM2.5 in Changsha City drops to the safety threshold of 10 µg/m3, the number of affected populations and health economic losses can far exceed the situation when it falls to 35 µg/m3, as stipulated by the national secondary standard. From 2013 to 2017, the total loss under the former situation was 1.48 times, 1.54 times, 1.86 times, 2.25 times, and 2.33 times that of the latter, respectively. Among them, all-cause death and cardiovascular death are the main sources of health loss. Taking 2017 as an example, when the annual average concentration dropped to 10 µg/m3, the health loss caused by deaths from all-cause death and cardiovascular disease was 49.16% of the total loss and 35.73%, respectively. Additionally, deaths as a result of respiratory disease, asthma, and chronic bronchitis contributed to 7.31%, 7.29%, and 0.51% of the total loss, respectively. The research results can provide a reference for the formulation of air pollution control policies based on health effects, which is of great significance for controlling air pollution and protecting people's health.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Material Particulado/análise , China/epidemiologia , Cidades/epidemiologia , Avaliação do Impacto na Saúde , Humanos , Urbanização
11.
Ecol Evol ; 7(24): 10582-10591, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29299240

RESUMO

Plant δ13C-temperature (δ-T) relation has been established in many systems and is often used as paleotemperature transfer function. However, it is still unclear about the exact contributions of temperature variation to plant 13C discrimination because of covariation between temperature and precipitation (aridity), which reduces confidence in reconstruction of paleoclimate. In this study, we measured carbon isotope composition (δ13C) of 173 samples of C3 perennial herbs from 22 sites across a temperature gradient along the 400 mm isohyet in the farming-pastoral zone of North China. The results showed that precipitation obviously affected the correlations of temperatures and foliar δ13C. After removing the influence of precipitation by analysis of covariance (ANCOVA), a more strongly positive relationship was obtained between site-mean foliar δ13C and annual mean temperature (AMT), with a regression coefficient of 0.1636‰/°C (p = .0024). For widespread species, Artemisia lavandulaefolia and Artemisia capillaries, the slopes (or coefficients) of foliar δ13C and AMT were significantly steeper (larger) than those of foliar δ13C and AMT where the precipitation influence was not excluded, whereas the δ-T coefficients of Polygonum persicaria and Leymus chinensis showed little change across the transect after deducting the precipitation effect. Moreover, the positive relationship between temperature and δ13C over the transect could be explained by soil moisture availability related to temperature. Our results may afford new opportunities for investigating the nature of past climate variability.

12.
Rapid Commun Mass Spectrom ; 24(20): 3063-71, 2010 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-20872640

RESUMO

The natural abundances of stable nitrogen isotopes in plants and soils have been viewed as recorders that can be used to reconstruct paleoclimate and ecological processes or to indicate the biogeochemical cycle of nitrogen in nature. This study systematically measured the nitrogen isotope composition (δ(15)N) in plants and surface soils along an altitudinal transect of elevation range of 1200 to 4500 m on the eastern slope of Mount Gongga in southwest China. The influences of photosynthetic pathways on plant δ(15)N as well as the effects of temperature and precipitation on δ(15)N altitudinal trends in plants and surface soils are discussed. Across this altitude transect, the δ(15)N values of C(3) and C(4) plants on Mount Gongga range between -9.87‰ and 7.58‰ with a mean value of -1.33‰, and between -3.98‰ and 4.38‰ with a mean value of -0.25‰, respectively. There is an evident δ(15)N difference between C(3) plants and C(4) plants. If, however, you only compare C(4) plants with those C(3) plants growing at the same altitudinal range, no significant difference in δ(15)N exists between them, suggesting that photosynthetic pathway does not have an influence on the plant δ(15)N values. In addition, we found that C(3), C(4) plants and surface soil (0-5 cm depth) all trend significantly towards more negative δ(15)N with increasing elevation. Furthermore, this study shows that the mean annual temperature and the mean annual precipitation positively and negatively correlate with δ(15)N in C(3) and C(4) plants, respectively. This indicates that precipitation and temperature are the main controlling factors of the δ(15)N variation in plants with altitude. We propose that lower δ(15)N values of plants and soils at higher altitude should be attributed to lower mineralization and lower net nitrification rates induced by low temperature and abundant rainfall.


Assuntos
Altitude , Isótopos de Nitrogênio/análise , Plantas/química , Solo/química , Análise de Variância , China , Clima , Geografia , Fotossíntese , Análise de Regressão
13.
Ying Yong Sheng Tai Xue Bao ; 15(11): 2055-60, 2004 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-15707312

RESUMO

Based on the data of regional scale and located field measurement, this paper investigated the soil moisture characteristics of the apple-planting subarea in Weibei dry highland, Shanxi Province. The results showed that the soil moisture characteristics in this subarea were affected by precipitation and evapotranspiration. At regional scale, the apple-land evapotranspiration in east Weibei area was the largest, and that in tableland gully and in west Weibei area was the medium and the smallest, respectively. Soil water deficit phenomenon was observed in three type areas. In east Weibei area, the mean water deficit amount was about 390.9 mm, the maximum was 674.6 mm, and the minimum value was 186.3 mm. In tableland gully area, the average and maximum values were 264.4 and 441.2 mm, respectively, and sometimes water surplus occurred. As a whole, soil moisture in west Weibei area was deficit, but the phenomena of water surplus were more prevalent than those in tableland gully area, and the maximum value was 151.8 mm. Soil moisture storage amount existed spatial and temporal variations in 3 different areas. The value of 2 m profile in apple growth season in west Weibei area was the largest, and that in Weibei tableland gully area and in Weibei east area was the medium and the smallest, respectively. The characteristics of soil moisture storage depended mainly on precipitation and its spatial-temporal distribution, as well as its consumed amount by apple trees. Water consumption in east Weibei area was the largest, the second was in gully area, and that in west Weibei area was the smallest. During apple growth season, the water consumption in dry year was less than that in wet year. In dry year, except for available precipitation, a considerable part of water used by apple trees came from deep (exceeded 3 m) soil moisture storage, which resulted in a dried soil layer and would affected the sustainable development of fruit production.


Assuntos
Ecossistema , Malus/crescimento & desenvolvimento , Solo/análise , Água/análise , China , Chuva
14.
Ying Yong Sheng Tai Xue Bao ; 13(9): 1057-60, 2002 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-12561160

RESUMO

The runoff and rainfall data of typical forested and non-forested watersheds in Ziwuling region, which is located in the hinterland of the Loess Plateau, were used to analyze their annual runoff variation comparatively. The result showed that the annual distribution of runoff in forested watersheds was uniform, compared with that in non-forested watersheds. The total runoff in flood season decreased by 8.88 mm and 7.1 mm. Regression analyses between runoff in dried-up season and rainfall in flood season or in dried-up season showed that the rainfall in flood season in forested watersheds could be changed into underground runoff by forest vegetation, and increased the runoff in dried-up season. The annual variation of runoff also indicated that the total effect of forest vegetation on dried-up runoff complement from October to December was 1.69 mm and 0.5 mm, and that from January to May was not significant.


Assuntos
Ecossistema , Árvores/fisiologia , Movimentos da Água , China , Conservação dos Recursos Naturais , Chuva
15.
Ying Yong Sheng Tai Xue Bao ; 13(9): 1085-90, 2002 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-12561167

RESUMO

A mathematical model was developed to analyze the effects of water stress and light condition on crop dry matter accumulation and yield formation based on canopy carbon net assimilation rate. The function leaf water potential (psi l) indicating the water status of canopy was incorporated into this model, according to the assumption that the canopy resistance (Rc) was increased under the conditions of water stress and low light density. Psi l was estimated by a simplified regression equation, in which, the independent variables were relative soil moisture (Aw), ambient temperature (Ta), and vapor pressure deficit (VPD). The aerodynamic resistance (Ra) in the model was defined as a function of wind speed (u), and the yield was calculated by a linear increase in harvest index (hi) with time. The modeled data agreed well with the data observed from pot experiment. Sensitivity analysis and simulation results suggested that the model could be useful in identifying environment factors, especially soil water content and light density effects on crop growth and yield formation.


Assuntos
Bombax/fisiologia , Fibra de Algodão , Produtos Agrícolas/fisiologia , Desidratação/fisiopatologia , Luz , Modelos Teóricos , Água , Transpiração Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...