Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
World J Clin Cases ; 12(20): 4048-4056, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39015898

RESUMO

BACKGROUND: Post-stroke infection is the most common complication of stroke and poses a huge threat to patients. In addition to prolonging the hospitalization time and increasing the medical burden, post-stroke infection also significantly increases the risk of disease and death. Clarifying the risk factors for post-stroke infection in patients with acute ischemic stroke (AIS) is of great significance. It can guide clinical practice to perform corresponding prevention and control work early, minimizing the risk of stroke-related infections and ensuring favorable disease outcomes. AIM: To explore the risk factors for post-stroke infection in patients with AIS and to construct a nomogram predictive model. METHODS: The clinical data of 206 patients with AIS admitted to our hospital between April 2020 and April 2023 were retrospectively collected. Baseline data and post-stroke infection status of all study subjects were assessed, and the risk factors for post-stroke infection in patients with AIS were analyzed. RESULTS: Totally, 48 patients with AIS developed stroke, with an infection rate of 23.3%. Age, diabetes, disturbance of consciousness, high National Institutes of Health Stroke Scale (NIHSS) score at admission, invasive operation, and chronic obstructive pulmonary disease (COPD) were risk factors for post-stroke infection in patients with AIS (P < 0.05). A nomogram prediction model was constructed with a C-index of 0.891, reflecting the good potential clinical efficacy of the nomogram prediction model. The calibration curve also showed good consistency between the actual observations and nomogram predictions. The area under the receiver operating characteristic curve was 0.891 (95% confidence interval: 0.839-0.942), showing predictive value for post-stroke infection. When the optimal cutoff value was selected, the sensitivity and specificity were 87.5% and 79.7%, respectively. CONCLUSION: Age, diabetes, disturbance of consciousness, NIHSS score at admission, invasive surgery, and COPD are risk factors for post-stroke infection following AIS. The nomogram prediction model established based on these factors exhibits high discrimination and accuracy.

2.
Int Immunopharmacol ; 138: 112567, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38950458

RESUMO

BACKGROUND: Imbalanced intestinal microbiota and damage to the intestinal barrier contribute to the development of necrotizing enterocolitis (NEC). Autoinducer-2 (AI-2) plays a crucial role in repairing intestinal damage and reducing inflammation. OBJECTIVE: This study aimed to investigate the impact of AI-2 on the expression of intestinal zonula occludens-1 (ZO-1) and occludin proteins in NEC. We evaluated its effects in vivo using NEC mice and in vitro using lipopolysaccharide (LPS)-stimulated intestinal cells. METHODS: Pathological changes in the intestines of neonatal mice were assessed using histological staining and scoring. Cell proliferation was measured using the cell counting kit-8 (CCK-8) assay to determine the optimal conditions for LPS and AI-2 interventions. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to analyze the mRNA levels of matrix metalloproteinase-3 (MMP3), protease activated receptor-2 (PAR2), interleukin-1ß (IL-1ß), and IL-6. Protein levels of MMP3, PAR2, ZO-1, and occludin were evaluated using western blot, immunohistochemistry, or immunofluorescence. RESULTS: AI-2 alleviated NEC-induced intestinal damage (P < 0.05) and enhanced the proliferation of damaged IEC-6 cells (P < 0.05). AI-2 intervention reduced the mRNA and protein expressions of MMP3 and PAR2 in intestinal tissue and cells (P < 0.05). Additionally, it increased the protein levels of ZO-1 and occludin (P < 0.05), while reducing IL-1ß and IL-6 mRNA expression (P < 0.05). CONCLUSION: AI-2 intervention enhances the expression of tight junction proteins (ZO-1 and occludin), mitigates intestinal damage in NEC neonatal mice and IEC-6 cells, potentially by modulating PAR2 and MMP3 signaling. AI-2 holds promise as a protective intervention for NEC. AI-2 plays a crucial role in repairing intestinal damage and reducing inflammation.

3.
BMC Vet Res ; 20(1): 295, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971753

RESUMO

BACKGROUND: Fatty liver in dairy cows is a common metabolic disease defined by triglyceride (TG) buildup in the hepatocyte. Clinical diagnosis of fatty liver is usually done by liver biopsy, causing considerable economic losses in the dairy industry owing to the lack of more effective diagnostic methods. Therefore, this study aimed to investigate the potential utility of blood biomarkers for the diagnosis and early warning of fatty liver in dairy cows. RESULTS: A total of twenty-four lactating cows within 28 days after parturition were randomly selected as experimental animals and divided into healthy cows (liver biopsy tested, n = 12) and cows with fatty liver (liver biopsy tested, n = 12). Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the macroelements and microelements in the serum of two groups of cows. Compared to healthy cows (C), concentrations of calcium (Ca), potassium (K), magnesium (Mg), strontium (Sr), selenium (Se), manganese (Mn), boron (B) and molybdenum (Mo) were lower and copper (Cu) was higher in fatty liver cows (F). Meanwhile, the observed differences in macroelements and microelements were related to delivery time, with the greatest major disparity between C and F occurring 7 days after delivery. Multivariable analysis was used to test the correlation between nine serum macroelements, microelements and fatty liver. Based on variable importance projection and receiver operating characteristic (ROC) curve analysis, minerals Ca, Se, K, B and Mo were screened as the best diagnostic indicators of fatty liver in postpartum cows. CONCLUSIONS: Our data suggested that serum levels of Ca, K, Mg, Se, B, Mo, Mn, and Sr were lower in F than in C. The most suitable period for an early-warning identification of fatty liver in cows was 7 days after delivery, and Ca, Se, K, B and Mo were the best diagnostic indicators of fatty liver in postpartum cows.


Assuntos
Doenças dos Bovinos , Fígado Gorduroso , Período Periparto , Animais , Bovinos/sangue , Feminino , Doenças dos Bovinos/sangue , Doenças dos Bovinos/diagnóstico , Fígado Gorduroso/veterinária , Fígado Gorduroso/sangue , Fígado Gorduroso/diagnóstico , Período Periparto/sangue , Biomarcadores/sangue , Manganês/sangue , Oligoelementos/sangue , Molibdênio/sangue , Fígado/química , Potássio/sangue , Boro/sangue , Selênio/sangue , Cálcio/sangue , Magnésio/sangue , Gravidez
4.
Natl Sci Rev ; 11(8): nwae207, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39007002

RESUMO

Thickening of electrodes is crucial for maximizing the proportion of active components and thus improving the energy density of practical energy storage cells. Nevertheless, trade-offs between electrode thickness and electrochemical performance persist because of the considerably increased ion transport resistance of thick electrodes. Herein, we propose accelerating ion transport through thick and dense electrodes by establishing an immobile polyanionic backbone within the electrode pores; and as a proof of concept, gel polyacrylic electrolytes as such a backbone are in situ synthesized for supercapacitors. During charge and discharge, protons rapidly hop among RCOO- sites for oriented transport, fundamentally reducing the effects of electrode tortuosity and polarization resulting from concentration gradients. Consequently, nearly constant ion transport resistance per unit thickness is achieved, even in the case of a 900-µm-thick dense electrode, leading to unprecedented areal capacitances of 14.85 F cm-2 at 1 mA cm-2 and 4.26 F cm-2 at 100 mA cm-2. This study provides an efficient method for accelerating ion transport through thick and dense electrodes, indicating a significant solution for achieving high energy density in energy storage devices, including but not limited to supercapacitors.

5.
Clin Rheumatol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874670

RESUMO

To explore the effectiveness and safety of upadacitinib for managing axial spondyloarthritis. Four databases (PubMed, EMBASE, Cochrane, and Web of Science) were applied to search randomized controlled trials (RCTs) for assessing upadacitinib treatment for axial spondyloarthritis published until January 2024. Five RCTs involving 1,246 participants were included. The upadacitinib group had significantly higher percentages of participants achieving Assessment of spondyloarthritis international society (ASAS) 20, ASAS40, ASAS partial remission, Bath ankylosing spondylitis disease activity index (BASDAI) 50, Ankylosing Spondylitis Disease Activity Score (ASDAS) low disease activity, ASDAS inactive disease, ASDAS clinically important improvement, and ASDAS major improvement, except for Work Productivity and Activity Impairment (WPAI) absenteeism. Obvious improvements were observed in the upadacitinib group for ASDAS (CRP), BASDAI, Modified BASDAI, Bath Ankylosing Spondylitis Functional Index (BASFI), Canadian Spondyloarthritis Research Consortium (SPARCC) MRI spine, SPARCC MRI sacroiliac joint, Ankylosing Spondylitis Quality of Life (ASQoLS), ASAS Health Index, Bath Ankylosing Spondylitis Metrology Index (BASMI), Maastricht Ankylosing Spondylitis Enthesitis Score (MASES), Total Back Pain, Nocturnal Back Pain, WPAI overall work impairment, WPAI presenteeism, and WPAI activity impairment. Adverse events (AEs) and serious adverse events (SAEs) incidence rates showed no significant difference differ between upadacitinib and placebo groups. Subgroup analysis revealed that disease subtype and age did not significantly affect efficacy, and upadacitinib demonstrated comparable efficacy to adalimumab for axial spondyloarthritis. Upadacitinib exhibited satisfactory efficacy in treating axial spondyloarthritis, reducing disease activity and significantly enhancing patients' physical function, emotional well-being, and social engagement. This meta-analysis offers robust evidence supporting upadacitinib as a new treatment for axial spondyloarthritis patients.

6.
Foods ; 13(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38890957

RESUMO

Kiwi wine (KW) is tipically made by fermenting juice from peeled kiwifruit, resulting in the disposal of peel and pomace as by-products. However, the peel contains various beneficial compounds, like phenols and flavonoids. Since the peel is edible and rich in these compounds, incorporating it into the fermentation process of KW presents a potential solution to minimize by-product waste. This study compared the aroma and taste profiles of KW from peeled (PKW) and unpeeled (UKW) kiwifruits by combining intelligent sensory technology, GC-MS, and 1H-NMR. Focusing on aroma profiles, 75 volatile organic compounds (VOCs) were identified in KW fermented with peel, and 73 VOCs in KW without peel, with 62 VOCs common to both. Among these compounds, rose oxide, D-citronellol, and bornylene were more abundant in UKW, while hexyl acetate, isoamyl acetate, and 2,4,5-trichlorobenzene were significantly higher in PKW. For taste profiles, E-tongue analysis revealed differences in the taste profiles of KW from the two sources. A total of 74 molecules were characterized using 1H-NMR. UKW exhibited significantly higher levels of tartrate, galactarate, N-acetylserotonin, 4-hydroxy-3-methoxymandelate, fumarate, and N-acetylglycine, along with a significantly lower level of oxypurinol compared to PKW. This study seeks to develop the theoretical understanding of the fermentation of kiwifruit with peel in sight of the utilization of the whole fruit for KW production, to increase the economic value of kiwifruit production.

7.
Adv Synth Catal ; 366(11): 2489-2494, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38895098

RESUMO

n-Bu4NI/K2S2O8 mediated transformylation from p-anisaldehyde to primary amides is reported. The mechanistic studies suggest the reaction occurs via a single electron transfer pathway. Based on the DFT electronic structure calculations of various reaction pathways, the most plausible mechanism involves the formation of a phenyl radical cation and an arenium ion as the key intermediates. It represents the first example where p-anisaldehyde is employed as a formyl source via a non-metal mediated Csp2-Csp2 bond cleavage.

8.
Adv Colloid Interface Sci ; 330: 103206, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823215

RESUMO

Stimuli-responsive polymeric micelles have emerged as a revolutionary approach for enhancing the in vivo stability, biocompatibility, and targeted delivery of functional nanoparticles (FNPs) in biomedicine. This article comprehensively reviews the preparation methods of these polymer micelles, detailing the innovative strategies employed to introduce stimulus responsiveness and surface modifications essential for precise targeting. We delve into the breakthroughs in utilizing these micelles to selectively deliver various FNPs including magnetic nanoparticles, upconversion nanoparticles, gold nanoparticles, and quantum dots, highlighting their transformative impact in the biomedical realm. Concluding, we present an insight into the current research landscape, addressing the challenges at hand, and envisioning the future trajectory in this burgeoning domain. Join us as we navigate the exciting confluence of polymer science and nanotechnology in reshaping biomedical solutions.


Assuntos
Micelas , Humanos , Nanopartículas/química , Polímeros Responsivos a Estímulos/química , Polímeros/química , Animais , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Pontos Quânticos/química
9.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38844070

RESUMO

INTRODUCTION AND OBJECTIVES: Coronary microvascular dysfunction (CMD) is highly prevalent and is recognized as an important clinical entity in patients with coronary heart disease (CHD). Nevertheless, the association of CMD with adverse cardiovascular events in the spectrum of CHD has not been systemically quantified. METHODS: We searched electronic databases for studies on patients with CHD in whom coronary microvascular function was measured invasively, and clinical events were recorded. The primary endpoint was major adverse cardiac events (MACE), and the secondary endpoint was all-cause death. Estimates of effect were calculated using a random-effects model from published risk ratios. RESULTS: We included 27 studies with 11 404 patients. Patients with CMD assessed by invasive methods had a higher risk of MACE (RR, 2.18; 95%CI, 1.80-2.64; P<.01) and all-cause death (RR, 1.88; 95%CI, 1.55-2.27; P<.01) than those without CMD. There was no significant difference in the impact of CMD on MACE (interaction P value=.95) among different invasive measurement modalities. The magnitude of risk of CMD assessed by invasive measurements for MACE was greater in acute coronary syndrome patients (RR, 2.84, 95%CI, 2.26-3.57; P<.01) than in chronic coronary syndrome patients (RR, 1.77, 95%CI, 1.44-2.18; P<.01) (interaction P value<.01). CONCLUSIONS: CMD based on invasive measurements was associated with a high incidence of MACE and all-cause death in patients with CHD. The magnitude of risk for cardiovascular events in CMD as assessed by invasive measurements was similar among different methods but varied among CHD populations.

10.
ACS Appl Mater Interfaces ; 16(26): 33235-33245, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885355

RESUMO

Enhancing the stability of multienzyme cascade reactions in metal-organic frameworks (MOFs) is a challenging task in the fields of biotechnology and chemistry. However, addressing this challenge could yield far-reaching benefits across the application range in the biomedical, food, and environmental sectors. In this study, multienzyme partitioning immobilization that sequentially immobilizes cascade enzymes with hierarchical MOFs is proposed to reduce substrate diffusion resistance. Conversion results of ginsenosides indicate that this strategy improves the cascade efficiency up to 1.26 times. The substrate diffusion model is used to investigate the dual-interenzyme mass transfer behavior of substrates in the restricted domain space and evaluate the substrate channeling effect under partitioning immobilization. Molecular docking and kinetic simulations reveal that the MOFs effectively limit the conformational changes of cascade enzymes at high temperatures and in organic solvents while maintaining a large pocket of active centers. This phenomenon increased efficient substrate docking to the enzyme molecules, further optimizing cascade efficiency. The results of the immobilization of GOX and horseradish peroxidase as model enzymes indicate that the partitioned MOF immobilization strategy could be used for universal adaptation of cascade enzymes.


Assuntos
Enzimas Imobilizadas , Peroxidase do Rábano Silvestre , Estruturas Metalorgânicas , Simulação de Acoplamento Molecular , Estruturas Metalorgânicas/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Cinética , Ginsenosídeos/química , Ginsenosídeos/metabolismo , Estabilidade Enzimática
11.
ACS Appl Mater Interfaces ; 16(24): 31137-31144, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38856774

RESUMO

In the context of the increasing number of spent lithium-ion batteries, it is urgent to explore cathode regeneration and upcycling solutions to reduce environmental pollution, promote resource reuse, and meet the demand for high-energy cathode materials. Here, a closed-loop recycling method is introduced, which not only reclaims cobalt and lithium elements from spent lithium-ion batteries but also converts them into high-voltage LiCoO2 (LCO) materials. This approach involved pretreatment, chlorination roasting, water leaching, and ion doping to regenerate nickel-doped LCO (Ni-RLCO) materials. The doping of nickel effectively enhances the electrochemical stability of the LCO cathode at 4.5 V. The Ni-RLCO cathode exhibited a high discharge specific capacity of 185.28 mAh/g at a rate of 0.5 C with a capacity retention of 86.3% after 50 cycles and excellent rate capacity of 156.21 mAh/g at 2 C. This work offers a approach in significance for upcycling spent LCO into high-energy-density batteries with long-term cycling stability under high voltage.

12.
Carbohydr Res ; 542: 109193, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908218

RESUMO

Feruloylated oligosaccharides (FOs) generated by decomposing plant hemicellulose, offer a wide range of potential applications in both the food and biomedical areas. As a graminaceous plant, bamboo is rich in hemicellulose. However, the structural composition and activity studies of FOs from it were rarely reported. In this study, FOs from Phyllostachys acuta (pFOs) obtained by enzymatic hydrolysis were isolated by AmberliteXAD-2 and C18 SPE columns. Then, pFOs were qualitatively and quantitatively analyzed by UPLC-ESI-MS/MS after labeled by 3-Amino-9-ethyl-carbazole (AEC), and the chemical antioxidant activity of pFOs and effects of pFOs on H2O2-induced oxidative damage were investigated. Finally, 14 of pFOs isomers were distinguished and identified, of which 10 did not contain hexoses and 4 did, and the three most abundant pFO structures were 12 (Iso 7, F1A1X2H2-AEC, 29.04 %), 11 (Iso 6, F1A1X1H2-AEC, 17.96 %), and 4 (Iso 3-1, F1A1X3-AEC, 15.57 %). The results of antioxidant studies showed that pFOs possessed certain reducing power, scavenging DPPH radicals, scavenging superoxide anion radicals, and scavenging hydroxyl radicals. Among them, the ability to clear DPPH radicals was particularly significant. pFOs significantly reduced the viability of RAW264.7 cells after H2O2 induction, whereas pFOs had a significant protective effect (p < 0.001). pFOs increased the viability of T-AOC and SOD enzymes in oxidatively damaged cells, as well as had a significant inhibition effect on ROS elevation (p < 0.001). This study lays the foundation for the structural analysis and antioxidant activity evaluation of bamboo-derived feruloyl oligosaccharides for their application in food and pharmaceutical fields.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Oligossacarídeos , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Oligossacarídeos/isolamento & purificação , Camundongos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Animais , Células RAW 264.7 , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/química , Poaceae/química , Sobrevivência Celular/efeitos dos fármacos
13.
bioRxiv ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38826414

RESUMO

The perivascular space (PVS) plays a crucial role in facilitating the clearance of waste products and the exchange of cerebrospinal fluid and interstitial fluid in the central nervous system. While optical imaging methods identify the glymphatic transport of fluorescent tracers through PVS of surface-diving arteries, their limited depth penetration impedes the study of glymphatic dynamics in deep brain regions. In this study, we introduced a novel high-resolution dynamic contrast-enhanced MRI mapping approach based on single-vessel multi-gradient-echo methods. This technique allowed the differentiation of penetrating arterioles and venules from adjacent parenchymal tissue voxels and enabled the detection of Gd-enhanced signals coupled to PVS of penetrating arterioles in the deep cortex and hippocampus. By directly infusing Gd into the lateral ventricle, we eliminated delays in cerebrospinal fluid flow and focused on PVS Gd transport through PVS of hippocampal arterioles. The study revealed significant PVS-specific Gd signal enhancements, shedding light on glymphatic function in deep brain regions. These findings advance our understanding of brain-wide glymphatic dynamics and hold potential implications for neurological conditions characterized by impaired waste clearance, warranting further exploration of their clinical relevance and therapeutic applications.

14.
Mol Cancer ; 23(1): 86, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685067

RESUMO

BACKGROUND: CDC6 is an oncogenic protein whose expression level fluctuates during the cell cycle. Although several E3 ubiquitin ligases responsible for the ubiquitin-mediated proteolysis of CDC6 have been identified, the deubiquitination pathway for CDC6 has not been investigated. METHODS: The proteome-wide deubiquitinase (DUB) screening was used to identify the potential regulator of CDC6. Immunofluorescence, protein half-life and deubiquitination assays were performed to determine the protein stability of CDC6. Gain- and loss-of-function experiments were implemented to analyse the impacts of OUTD6A-CDC6 axis on tumour growth and chemosensitivity in vitro. N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced conditional Otud6a knockout (CKO) mouse model and tumour xenograft model were performed to analyse the role of OTUD6A-CDC6 axis in vivo. Tissue specimens were used to determine the association between OTUD6A and CDC6. RESULTS: OTUD6A interacts with, depolyubiquitinates and stabilizes CDC6 by removing K6-, K33-, and K48-linked polyubiquitination. Moreover, OTUD6A promotes cell proliferation and decreases sensitivity to chemotherapy by upregulating CDC6. CKO mice are less prone to BCa tumorigenesis induced by BBN, and knockdown of OTUD6A inhibits tumour progression in vivo. Furthermore, OTUD6A protein level has a positive correlation with CDC6 protein level, and high protein levels of OTUD6A and CDC6 are associated with poor prognosis in patients with bladder cancer. CONCLUSIONS: We reveal an important yet missing piece of novel DUB governing CDC6 stability. In addition, our findings propose a model for the OTUD6A-CDC6 axis that provides novel insights into cell cycle and chemosensitivity regulation, which may become a potential biomarker and promising drug target for cancer treatment.


Assuntos
Proteínas de Ciclo Celular , Resistencia a Medicamentos Antineoplásicos , Proteínas Nucleares , Ubiquitinação , Animais , Humanos , Camundongos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Camundongos Knockout , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica , Enzimas Desubiquitinantes/metabolismo , Enzimas Desubiquitinantes/genética , Modelos Animais de Doenças
15.
Environ Pollut ; 347: 123716, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458526

RESUMO

Parabens are widely used as antibacterial preservatives in foods and personal care products. The knowledge about the modes of toxic action of parabens on development and reproduction remain very limited. The present study attempted to establish a development and reproduction-associated adverse outcome pathway (AOP) by evaluating the effects of methylparaben (MP), ethylparaben (EP), propylparaben (PP) and butylparaben (BP) on the biosynthesis of gonadotropins, which are key hormones for development and reproduction. MP and BP significantly upregulated the mRNA and protein levels of follicle stimulating hormone (FSH) and luteinizing hormone (LH) in pituitary gonadotropic cells in a concentration-dependent manner. Activation of gonadotropin-releasing hormone receptor (GnRHR) was required for gonadotropin biosynthesis induced by BP, but not MP. Molecular docking data further demonstrated the higher binding efficiency of BP to human GnRHR than that of MP, suggesting GnRHR as a potential molecular initiative event (MIE) for BP-induced gonadotropin production. L-type voltage-gated calcium channels (VGCCs) were found to be another candidate for MIE in gonadotropic cells response to both MP and BP exposure. The calcium-dependent activation of extracellular signal-regulated kinase 1 (ERK1) and ERK2 was subsequently required for MP- and BP-induced activation of GnRHR and L-type VGCCs pathways. In summary, MP and BP promoted gonadotropin biosynthesis through their interactions with cellular macromolecules GnRHR, L-type VGCCs, and subsequent key event ERK1/2. This is the first study to report the direct interference of parabens with gonadotropin biosynthesis and establish a potential AOP based on pathway-specific mechanism, which contributes to the effective screening of environmental chemicals with developmental and reproductive health risks.


Assuntos
Rotas de Resultados Adversos , Parabenos , Humanos , Parabenos/toxicidade , Parabenos/metabolismo , Simulação de Acoplamento Molecular , Gonadotropinas , Hormônio Foliculoestimulante , Reprodução , Hormônio Liberador de Gonadotropina
16.
Angew Chem Int Ed Engl ; 63(19): e202400797, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38477225

RESUMO

Traditional lithium salts are difficult to meet practical application demand of lithium metal batteries (LMBs) under high voltages and temperatures. LiPF6, as the most commonly used lithium salt, still suffers from notorious moisture sensitivity and inferior thermal stability under those conditions. Here, we synthesize a lithium salt of lithium perfluoropinacolatoborate (LiFPB) comprising highly-fluorinated and borate functional groups to address the above issues. It is demonstrated that the LiFPB shows superior thermal and electrochemical stability without any HF generation under high temperatures and voltages. In addition, the LiFPB can form a protective outer-organic and inner-inorganic rich cathode electrolyte interphase on LiCoO2 (LCO) surface. Simultaneously, the FPB- anions tend to integrate into lithium ion solvation structure to form a favorable fast-ion conductive LiBxOy based solid electrolyte interphase on lithium (Li) anode. All these fantastic features of LiFPB endow LCO (1.9 mAh cm-2)/Li metal cells excellent cycling under both high voltages and temperatures (e.g., 80 % capacity retention after 260 cycles at 60 °C and 4.45 V), and even at an extremely elevated temperature of 100 °C. This work emphasizes the important role of salt anions in determining the electrochemical performance of LMBs at both high temperature and voltage conditions.

17.
J Food Sci ; 89(4): 2277-2291, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488738

RESUMO

Calcium peptide chelates are developed as efficient supplements for preventing calcium deficiency. Spent hen meat (SHM) contains a high percentage of proteins but is generally wasted due to the disadvantages such as hard texture. We chose the underutilized SHM to produce peptides to bind calcium by proteolysis and aimed to investigate chelation between calcium and peptides in hydrolysate for a sustainable purpose. The optimized proteolysis conditions calculated from the result of response surface methodology for two-step hydrolysis were 0.30% (wenzyme/wmeat) for papain with a hydrolysis time of 3.5 h and 0.18% (wenzyme/wmeat) for flavourzyme with a hydrolysis time of 2.8 h. The enzymatic hydrolysate (EH) showed a binding capacity of 63.8 ± 1.8 mg calcium/g protein. Ethanol separation for EH improved the capacity up to a higher value of 68.6 ± 0.6 mg calcium/g protein with a high association constant of 420 M-1 (25°C) indicating high stability. The separated fraction with a higher amount of Glu, Asp, Lys, and Arg had higher calcium-binding capacity, which was related to the number of ─COOH and ─NH2 groups in peptide side chains according to the result from amino acid analysis and Fourier transform infrared spectroscopy. Two-step enzymatic hydrolysis and ethanol separation were an efficient combination to produce peptide mixtures derived from SHM with high calcium-binding capacity. The high percentage of hydrophilic amino acids in the separated fraction was concluded to increase calcium-binding capacity. This work provides foundations for increasing spent hen utilization and developing calcium peptide chelates based on underutilized meat.


Assuntos
Cálcio , Galinhas , Animais , Feminino , Cálcio/metabolismo , Galinhas/metabolismo , Hidrolisados de Proteína/química , Peptídeos/química , Hidrólise , Papaína/química , Aminoácidos , Cálcio da Dieta/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Carne , Etanol
18.
ACS Appl Mater Interfaces ; 16(12): 14561-14572, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38500377

RESUMO

Uridine diphosphate (UDP)-glucosyltransferases (UGTs) have received increasing attention in the field of ginsenoside Rh2 conversion. By harnessing the metal chelation between transition metal ions and imidazole groups present on His-tagged enzymes, a specific immobilization of the enzyme within metal-organic frameworks (MOFs) is achieved. This innovative approach not only enhances the stability and reusability of the enzyme but also enables one-step purification and immobilization. Consequently, the need for purifying crude enzyme solutions is effectively circumvented, resulting in significant cost savings during experimentation. The use of immobilized enzymes in catalytic reactions has shown great potential for achieving higher conversion rates of ginsenoside Rh2. In this study, highly stable mesoporous Zn-Ni MOF materials were synthesized at 150 °C by a solvothermal method. The UGT immobilized on the Zn-Ni MOF (referred to as UGT@Zn-Ni MOF) exhibited superior pH adaptability and thermal stability, retaining approximately 76% of its initial activity even after undergoing 7 cycles. Furthermore, the relative activity of the immobilized enzyme remained at an impressive 80.22% even after 45 days of storage. The strong specific adsorption property of Zn-Ni MOF on His-tagged UGT was confirmed through analysis using polyacrylamide gel electrophoresis. UGT@Zn-Ni MOF was used to catalyze the conversion reaction, and the concentration of rare ginsenoside Rh2 was generated at 3.15 µg/mL. The results showed that Zn-Ni MOF is a material that can efficiently purify and immobilize His-tagged enzyme in one step and has great potential for industrial applications in enzyme purification and ginsenoside synthesis.


Assuntos
Ginsenosídeos , Glicosiltransferases , Enzimas Imobilizadas/química , Indicadores e Reagentes , Zinco
19.
Sci Total Environ ; 924: 171579, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38460691

RESUMO

How to increase the usable land area by adhering to environmentally friendly ecological restoration of mines with limited funds is a challenge that many cities are currently facing. Cost-benefit analysis (CBA) can provide efficient and effective restoration decisions for abandoned mine land (AML) ecological restoration with limited financial resources. Thus, this study proposes an integrated approach for coupling ecological benefits and restoration costs, including hotspots/coldspots analysis based on five ecosystem services (ESs), landscape connectivity analysis based on graph theory model, hidden costs, and project implementation costs to prioritize AML restoration. The study was conducted on 54 abandoned mine lands (AMLs) in Chaoyang city, the ecological security barrier of China's northern sand prevention belt (NSPB). The comprehensive analysis prioritized the restoration of AMLs into four levels, of which 9 mines were in priority I, where restoration was recommended as a priority, and 22 mines were in priority II, where restoration could be carried out within the affordability of funds. In addition, our model indicates areas with high ecological benefits, in which the ecological source area (7423.66 km2) and the ecosystem service hotspots area (2028.44 km2) are mostly distributed in the southwestern part of Chaoyang city, the two mountain ranges of Songling mountain and Nuruerhu mountain. This study provides scientific spatial guidance to ensure that the AMLs realizes effective restoration and management.

20.
Med Res Rev ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515232

RESUMO

Atropisomerism, an expression of axial chirality caused by limited bond rotation, is a prominent aspect within the field of medicinal chemistry. It has been shown that atropisomers of a wide range of compounds, including established FDA-approved drugs and experimental molecules, display markedly different biological activities. The time-dependent reversal of chirality in atropisomers poses complexity and obstacles in the process of drug discovery and development. Nonetheless, recent progress in understanding atropisomerism and enhanced characterization methods have greatly assisted medicinal chemists in the effective development of atropisomeric drug molecules. This article provides a comprehensive review of their special design thoughts, synthetic routes, and biological activities, serving as a reference for the synthesis and biological evaluation of bioactive atropisomers in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...