Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Front Surg ; 11: 1380570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872724

RESUMO

Background: New-onset postoperative atrial fibrillation (POAF) is a common complication after pulmonary thromboendarterectomy (PEA), yet the risk factors and their impact on prognosis remain poorly understood. This study aims to investigate the risk factors associated with new-onset POAF after PEA and elucidate its underlying connection with adverse postoperative outcomes. Methods: A retrospective analysis included 129 consecutive chronic thromboembolic pulmonary hypertension (CTEPH) patients and 16 sarcoma patients undergoing PEA. Univariate and multivariate analyses were conducted to examine the potential effects of preoperative and intraoperative variables on new-onset POAF following PEA. Propensity score matching (PSM) was then employed to adjust for confounding factors. Results: Binary logistic regression revealed that age (odds ratio [OR] = 1.041, 95% confidence interval [CI] = 1.008-1.075, p = 0.014) and left atrial diameter[LAD] (OR = 1.105, 95% CI = 1.025-1.191, p = 0.009) were independent risk factors for new-onset POAF after PEA. The receiver operating characteristic (ROC) curve indicated that the predictive abilities of age and LAD for new-onset POAF were 0.652 and 0.684, respectively. Patients with new-onset POAF, compared with those without, exhibited a higher incidence of adverse outcomes (in-hospital mortality, acute heart failure, acute kidney insufficiency, reperfusion pulmonary edema). Propensity score matching (PSM) analyses confirmed the results. Conclusion: Advanced age and LAD independently contribute to the risk of new-onset POAF after PEA. Patients with new-onset POAF are more prone to adverse outcomes. Therefore, heightened vigilance and careful monitoring of POAF after PEA are warranted.

2.
J Colloid Interface Sci ; 668: 335-342, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38678888

RESUMO

Membrane receptors perform a diverse range of cellular functions, accounting for more than half of all drug targets. The mechanical microenvironment regulates cell behaviors and phenotype. However, conventional analysis methods of membrane receptors often ignore the effects of the extracellular matrix stiffness, failing to reveal the heterogeneity of cell membrane receptors expression. Herein, we developed an in-situ surface-enhanced Raman scattering (SERS) imaging method to visualize single-cell membrane receptors on substrates with different stiffness. Two SERS substrates, Au@4-mercaptobenzonitrile@Ag@Sgc8c and Au@4-pethynylaniline@Ag@SYL3c, were employed to specifically target protein tyrosine kinase-7 (PTK7) and epithelial cell adhesion molecule (EpCAM), respectively. The polyacrylamide (PA) gels with tunable stiffness (2.5-25 kPa) were constructed to mimic extracellular matrix. The simultaneous SERS imaging of dual membrane receptors on single cancer cells on substrates with different stiffness was achieved. Our findings reveal decreased expression of PTK7 and EpCAM on cells cultured on stiffer substrates and higher migration ability of the cells. The results elucidate the heterogeneity of membrane receptors expression of cells cultured on the substrates with different stiffness. This single-cell analysis method offers an in-situ platform for investigating the impacts of extracellular matrix stiffness on the expression of membrane receptors, providing insights into the role of cell membrane receptors in cancer metastasis.


Assuntos
Molécula de Adesão da Célula Epitelial , Matriz Extracelular , Análise de Célula Única , Análise Espectral Raman , Matriz Extracelular/metabolismo , Humanos , Molécula de Adesão da Célula Epitelial/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Ouro/química , Resinas Acrílicas/química , Prata/química , Propriedades de Superfície , Linhagem Celular Tumoral , Compostos de Anilina/química , Tamanho da Partícula , Moléculas de Adesão Celular
3.
Foods ; 13(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611373

RESUMO

During the rice milling process, single and continuous compression occurs between brown rice and the processing parts. When the external load exceeds the yield limit of brown rice, brown rice kernels are damaged; with an increase in compression deformation or the extent of compression, the amount of damage to the kernels expands and accumulates, ultimately leading to the fracture and breakage of kernels. In order to investigate the mechanical compression damage characteristics of brown rice kernels under real-world working conditions, this study constructs an elastic-plastic compression model and a continuous damage model of brown rice kernels based on Hertz theory and continuous damage theory; the accuracy of this model is verified through experiments, and the relevant processing critical parameters are calculated. In this study, three varieties of brown rice kernels are taken as the research object, and mechanical compression tests are carried out using a texture apparatus; finally, the test data are analysed and calculated by combining them with the theoretical model to obtain the relevant critical parameters of damage. The results of the single compression crushing test of brown rice kernels showed that the maximum destructive forces Fc in the single compression of Hunan Early indica 45, Hunan Glutinous 28, and Southern Japonica 518 kernels were 134.77 ± 11.20 N, 115.64 ± 4.35 N, and 115.84 ± 5.89 N, respectively; the maximum crushing deformations αc in the single compression crushing test were 0.51 ± 0.04 mm, 0.43 ± 0.01 mm, and 0.48 ± 0.17 mm, respectively; and the critical average deformations αs of elasticity-plasticity deformation were 0.224 mm, 0.267 mm, and 0.280 mm, respectively. The results of the continuous compression crushing test of brown rice kernels showed that the critical deformations αd of successive compression damage formation were 0.224 mm, 0.267 mm, and 0.280 mm, and the deformation ratios δ of compression damage were 12.24%, 14.35%, and 12.84%. From the test results, it can be seen that the continuous application of compression load does not result in the crushing of kernels if the compression deformation is less than αd during mechanical compression. The continuous application of compressive loads can lead to fragmentation of the kernels if the compressive deformation exceeds αd; the larger the compression variant, the less compression is required for crushing. If the compression deformation exceeds αc, then a single compressive load can directly fragment the kernels. Therefore, the load employed during rice milling should be based on the variety of brown rice used in order to prevent brown rice deformation, which should be less than αd, and the maximum load should not exceed Fc. The results of this study provide a theoretical reference for the structure and parameter optimisation of a rice milling machine.

4.
Apoptosis ; 29(5-6): 768-784, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493408

RESUMO

Hepatocellular carcinoma (HCC) is a common cause of cancer-associated death worldwide. The mitochondrial unfolded protein response (UPRmt) not only maintains mitochondrial integrity but also regulates cancer progression and drug resistance. However, no study has used the UPRmt to construct a prognostic signature for HCC. This work aimed to establish a novel signature for predicting patient prognosis, immune cell infiltration, immunotherapy, and chemotherapy response based on UPRmt-related genes (MRGs). Transcriptional profiles and clinical information were obtained from the TCGA and ICGC databases. Cox regression and LASSO regression analyses were applied to select prognostic genes and develop a risk model. The TIMER algorithm was used to investigate immunocytic infiltration in the high- and low-risk subgroups. Here, two distinct clusters were identified with different prognoses, immune cell infiltration statuses, drug sensitivities, and response to immunotherapy. A risk score consisting of seven MRGs (HSPD1, LONP1, SSBP1, MRPS5, YME1L1, HDAC1 and HDAC2) was developed to accurately and independently predict the prognosis of HCC patients. Additionally, the expression of core MRGs was confirmed by immunohistochemistry (IHC) staining, single-cell RNA sequencing, and spatial transcriptome analyses. Notably, the expression of prognostic MRGs was significantly correlated with sorafenib sensitivity in HCC and markedly downregulated in sorafenib-treated HepG2 and Huh7 cells. Furthermore, the knockdown of LONP1 decreased the proliferation, invasion, and migration of HepG2 cells, suggesting that upregulated LONP1 expression contributed to the malignant behaviors of HCC cells. To our knowledge, this is the first study to investigate the consensus clustering algorithm, prognostic potential, immune microenvironment infiltration and drug sensitivity based on the expression of MRGs in HCC. In summary, the UPRmt-related classification and prognostic signature could assist in determining the prognosis and personalized therapy of HCC patients from the perspectives of predictive, preventative and personalized medicine.


Assuntos
Carcinoma Hepatocelular , Imunoterapia , Neoplasias Hepáticas , Mitocôndrias , Sorafenibe , Resposta a Proteínas não Dobradas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/diagnóstico , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Prognóstico , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Masculino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Feminino , Linhagem Celular Tumoral
5.
J Thorac Dis ; 16(2): 1074-1086, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38505040

RESUMO

Background: Acute kidney injury (AKI) is a common and life-threatening complication following pulmonary endarterectomy (PEA). Our study aimed to investigate the risk factors associated with AKI and evaluate the correlation between serum myoglobin (sMb) levels and postoperative AKI. Methods: We conducted a retrospective study involving 134 patients who underwent PEA at China-Japan Friendship Hospital. AKI was defined and staged according to the Kidney Disease Improving Global Outcomes (KDIGO) criteria. Results: During the study period, the incidence of postoperative AKI was 57.5%, and the associated mortality rate was 6.0%. Severe AKI was found to be significantly associated with worse short-term outcomes (P<0.05). Logarithmically transformed postoperative day (POD) 0 sMb levels were significantly associated with AKI [odds ratio (OR) =5.174; 95% confidence interval (CI), 2.307-11.603; P<0.001] and severe AKI (OR =4.605; 95% CI, 1.510-14.048; P=0.007), also had independent predictive value [area under the curve (AUC) =0.776 in AKI and AUC =0.737 in severe AKI]. The optimal cut-off values were 370.544 ng/mL for AKI and 419.473 ng/mL for severe AKI. Furthermore, albumin concentration was found to play a protective role in the development of severe AKI (OR =0.838; 95% CI, 0.716-0.980; P=0.027) when higher than 40.350 g/L. Conclusions: Our findings suggest that a high concentration of POD0 sMb may increase the risk of developing AKI following PEA surgery. Increasing albumin concentration could serve as an effective preventive measure against AKI.

6.
Materials (Basel) ; 17(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38541518

RESUMO

The Co3O4 is a typical p-type metal oxide semiconductor (MOS) that attracted great attention for hydrogen detection. In this work, porous, urchin-like Co3O4 was synthesized using a hydrothermal method with the assistance of glucose and a subsequent calcination process. Urchin-like Co3O4 has a large specific surface area of 81.4 m2/g. The response value of urchin-like Co3O4 to 200 ppm hydrogen at 200 °C is 36.5 (Rg/Ra), while the low-detection limit is as low as 100 ppb. The obtained Co3O4 also exhibited good reproducibility, long-term stability, and selectivity towards various gases (e.g., ammonia, hydrogen, carbon monoxide, and methane). Porous, urchin-like Co3O4 is expected to become a potential candidate for low-concentration hydrogen-sensing materials with the above advantages.

7.
CNS Neurosci Ther ; 30(2): e14612, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334030

RESUMO

AIMS: Numerous studies on animals have shown that exposure to general anesthetics in infant stage may cause neurocognitive impairment. However, the exact mechanism is not clear. The dysfunction of iron metabolism can cause neurodevelopmental disorders. Therefore, we investigated the effect of iron metabolism disorder induced by sevoflurane (Sev) on cognitive function and the proliferation of neural precursor cells (NPCs) and neural stem cells (NSCs) in infant mice. METHODS: C57BL/6 mice of postnatal day 14 and neural stem cells NE4C were treated with 2% Sev for 6 h. We used the Morris water maze (MWM) to test the cognitive function of infant mice. The proliferation of NPCs was measured using bromodeoxyuridine (BrdU) label and their markers Ki67 and Pax6 in infant brain tissues 12 h after anesthesia. Meanwhile, we used immunohistochemical stain, immunofluorescence assay, western blot, and flow cytometer to evaluate the myelinogenesis, iron levels, and cell proliferation in cortex and hippocampus or in NE4C cells. RESULTS: The results showed that Sev significantly caused cognitive deficiency in infant mice. Further, we found that Sev inhibited oligodendrocytes proliferation and myelinogenesis by decreasing MBP and CC-1 expression and iron levels. Meanwhile, Sev also induced the iron deficiency in neurons and NSCs by downregulating FtH and FtL expression and upregulating the TfR1 expression in the cortex and hippocampus, which dramatically suppressed the proliferation of NSCs and NPCs as indicated by decreasing the colocalization of Pax6+ and BrdU+ cells, and caused the decrease in the number of neurons. Interestingly, iron supplementation before anesthesia significantly improved iron deficiency in cortex and hippocampus and cognitive deficiency induced by Sev in infant mice. Iron therapy inhibited the decrease of MBP expression, iron levels in neurons and oligodendrocytes, and DNA synthesis of Pax6+ cells in hippocampus induced by Sev. Meanwhile, the number of neurons was partially recovered in hippocampus. CONCLUSION: The results from the present study demonstrated that Sev-induced iron deficiency might be a new mechanism of cognitive impairment caused by inhaled anesthetics in infant mice. Iron supplementation before anesthesia is an effective strategy to prevent cognitive impairment caused by Sev in infants.


Assuntos
Disfunção Cognitiva , Deficiências de Ferro , Células-Tronco Neurais , Humanos , Camundongos , Animais , Sevoflurano/toxicidade , Células-Tronco Neurais/metabolismo , Bromodesoxiuridina/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Proliferação de Células , Ferro/metabolismo , Hipocampo/metabolismo
8.
Int J Biol Macromol ; 260(Pt 2): 129187, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262551

RESUMO

A new polysaccharide (IHP-1aa) was isolated from the fruiting body of Inonotus hispidus by hot water extraction, ethanol precipitation and column chromatography. The molecular weight of IHP-1aa was 26.9 kDa. Structural analysis showed that IHP-1aa consisted of glucose (Glc), galactose (Gal), fucose (Fuc), mannose (Man) and contained a certain amount of 3-O-methylgalactose (3-O-Me-Gal). The structure was mainly composed of →6)-α/ß-D-Glcp-(1→, →6)-α-D-Galp-(1→, →6)-(3-O-Me)-α-D-Galp-(1→, →6)-α-D-Manp-(1 â†’ and →2, 6)-α-D-Galp-(1 â†’ as the main chain. Branched at O-2 with single ß-L-Fucp-(1 â†’ 6)-α-D-Galp-(1 â†’ 6)-α-D-Glcp-(1 â†’ as major the side chain. The results of SEM, XRD and AFM combined with Congo red indicated that IHP-1aa may be amorphous granular chain conformation. In addition, IHP-1aa stimulated macrophage function and improved phagocytic ability of RAW264.7, as well as promoted the secretion of NO, TNF-α and IL-6. IHP-1aa, a 3-O-methylgalactose-containing heteropolysaccharide, was isolated for the first time from the I. hispidus, which may be used as a potential immunomodulator in functional foods.


Assuntos
Inonotus , Metilgalactosídeos , Polissacarídeos , Humanos , Polissacarídeos/química , Galactose/química , Glucose/química
9.
Small ; : e2306827, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054756

RESUMO

Zinc metal is a promising candidate for anodes in zinc-ion batteries (ZIBs), but its widespread implementation is hindered by dendrite growth in aqueous electrolytes. Dendrites lead to undesirable side reactions, such as hydrogen evolution, passivation, and corrosion, causing reduced capacity during prolonged cycling. In this study, an approach is explored to address this challenge by directly growing 1D zinc oxide (ZnO) nanorods (NRs) and 2D ZnO nanoflakes (NFs) on Zn anodes, forming artificial layers to enhance ZIB performance. The incorporation of ZnO on the anode offers both chemical and thermal stability and leverages its n-type semiconductor nature to facilitate the formation of ohmic contacts. This results in efficient electron transport during Zn ion plating and stripping processes. Consequently, the ZnO NFs-coated Zn anodes demonstrate significantly improved charge storage performance, achieving 348 mAh g-1 , as compared to ZnO NRs (250 mAh g-1 ) and pristine Zn (160 mAh g-1 ) anodes when evaluated in full cells with V2 O5 cathodes. One significant advantage of ZnO NFs lies in their highly polar surfaces, promoting strong interactions with water molecules and rendering them exceptionally hydrophilic. This characteristic enhances the ability of ZnO NFs to desolvate Zn2+ ions, leading to improved charge storage performance.

10.
Perfusion ; : 2676591231208984, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38124315

RESUMO

INTRODUCTION: To determine the risk factors of hyperlactatemia in pulmonary endarterectomy (PEA) surgery and assess whether elevated blood lactate levels are associated with adverse outcomes. METHODS: In this retrospective observational study, a total of 111 consecutive patients who underwent PEA for chronic thromboembolic pulmonary hypertension at the XXX Hospital between December 2016 and January 2022 were included. We retrospectively evaluated arterial blood samples analyzed intraoperatively. The pre- and intraoperative risk factors for hyperlactatemia and the postoperative outcomes were recorded. RESULTS: Lactate levels gradually increased during surgery. The optimal cut-off lactate level for major postoperative complications, calculated using receiver operating characteristic analysis, was 7.0 mmol/L. Deep hypothermic circulatory arrest (DHCA) duration, nadir hematocrit, and preoperative pulmonary vascular resistance were risk factors for lactate levels >7 mmol/L. Moreover, the intraoperative peak lactate level during PEA under DHCA was found to be a statistically significant predictor of major complications being associated with longer mechanical ventilation time (r = 0.294; p = .003) and intensive care unit length of stay (r = 0.327; p = .001). CONCLUSIONS: Deep hypothermic circulatory arrest duration, nadir hematocrit, and preoperative pulmonary vascular resistance were associated with hyperlactatemia. Increased lactate levels were independent predictors of longer mechanical ventilation time, intensive care unit length of stay, and major complications.

11.
ACS Sens ; 8(11): 4307-4314, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37923556

RESUMO

Matrix metalloproteinase-9 (MMP-9), a proteolytic enzyme, degrades the extracellular matrix and plays a key role in cell communication. However, the real-time monitoring of cell-secreted MMP-9 during cell-cell communication remains a challenge. Herein, we developed a cell-based membrane-anchored surface-enhanced Raman scattering (SERS) biosensor using a Au@4-mercaptobenzonitrile (4-MBN) @Ag@peptide nanoprobe for the monitoring of cell-secreted MMP-9 during cell communication. The multifunctional nanoprobe was created with Au@4-MBN@Ag acting as an interference-free SERS substrate with high enhancement in which the peptide not only serves to anchor the cell membrane but also provides MMP-9-activatable cleaved peptide chains. MMP-9-mediated cleavage resulted in the detachment of the Au@4-MBN@Ag nanoparticles from the cell membrane, thereby decreasing the SERS signals of cancer cells. The cell membrane-anchored SERS biosensor enables the real-time monitoring of cell-secreted MMP-9 during the interaction of MCF-7 and HUVEC cells. This study successfully demonstrates the dynamic change of cell-secreted MMP-9 during the communication between MCF-7 cells and HUVEC cells. The proposed nanoprobe was also utilized to precisely evaluate the breast and hepatoma cancer cell aggressiveness. This study provides a novel strategy for real-time monitoring of MMP-9 secretion during cell communication, which is promising for the investigation of the mechanisms underlying different tumor processes.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Metaloproteinase 9 da Matriz , Prata , Membrana Celular , Peptídeos
12.
Front Neurol ; 14: 1256200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954648

RESUMO

Spontaneous intracranial hypotension (SIH) may lead to cerebral venous thrombosis (CVT). This case report describes the diagnostic and treatment processes used for a patient with CVT caused by SIH due to spontaneous spinal cerebrospinal fluid (CSF) leakage in the high cervical region. Clinical data were collected from a 37-year-old man with an initial symptom of spontaneous posterior cervical pain. The diagnostic and treatment processes of SIH-induced CVT were described. A magnetic resonance imaging (MRI) study showed superior sagittal sinus thrombosis, and a lumbar puncture revealed a low initial CSF pressure of less than 60 mmH2O. The patient underwent anticoagulation and fluid rehydration therapies. No abnormalities were observed in the thoracic MRI scan, but a cervical MRI scan revealed a spontaneous CSF leak. An epidural blood patch with autologous blood was performed, and symptoms completely resolved 3 days after the procedure. This report proposes a diagnostic procedure for detecting rare cases of SIH-induced CVT, thereby preventing future misdiagnoses and delayed treatment. When a patient presenting with CVT in conjunction with intracranial hypotension has no history of trauma or piercing, SIH caused by spontaneous spinal CSF leakage should be considered as a potential cause of secondary low intracranial pressure. For detection of CSF leaks at rare sites, an MRI of the whole spine rather than a localized MRI of the spine needs to be performed to avoid misdiagnosis. An epidural blood patch should be performed as soon as possible as it may shorten the length of hospitalization and improve prognosis.

13.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37837407

RESUMO

The numerous health benefits of dietary fibers (DFs) justify their inclusion in human diets and biomedical products. Given the short- and long-term human impacts of the COVID-19 virus on human health, the potential of DFs in building immunity against gastrointestinal and respiratory disorders is currently receiving high attention. This paper reviews the physicochemical properties of DFs, together with their immune functions and effects on the gastrointestinal tract and respiratory system mainly based on research in the last ten years. Possible modes of action of DFs in promoting health, especially building immunity, are explored. We seek to highlight the importance of understanding the exact physical and chemical characteristics and molecular behaviors of DFs in providing specific immune function. This review provides a perspective beyond the existing recognition of DFs' positive effects on human health, and offers a theoretical framework for the development of special DFs components and their application in functional foods and other therapeutic products against gastrointestinal and respiratory disorders. DFs enhance immunity from gastrointestinal and respiratory diseases to promote host health.

14.
Nat Commun ; 14(1): 6615, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857626

RESUMO

The pressing crisis of clean water shortage requires membranes to possess effective ion sieving as well as fast water flux. However, effective ion sieving demands reduction of pore size, which inevitably hinders water flux in hydrophilic membranes, posing a major challenge for efficient water/ion separation. Herein, we introduce anomalous water molecular gating based on nanofiltration membranes full of graphene capillaries at 6 Å, which were fabricated from spontaneous π-π restacking of island-on-nanosheet graphitic microstructures. We found that the membrane can provide effective ion sieving by suppressing osmosis-driven ion diffusion to negligible levels (~10-4 mol m-2 h-1); unexpectedly, ultrafast bulk flow of water (45.4 L m-2 h-1) was still functional with ease, as gated on/off by adjusting hydrostatic pressures within only 10-2 bar. We attribute this seemingly incompatible observation to graphene nanoconfinement effect, where crystal-like water confined within the capillaries hinders diffusion under osmosis but facilitates high-speed, diffusion-free water transport in the way analogous to Newton's cradle-like Grotthus conduction. This strategy establishes a type of liquid-solid-liquid, phase-changing molecular transport for precise and ultrafast molecular sieving.

15.
PeerJ ; 11: e15923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663286

RESUMO

Background: Storage of potato tubers is an essential stage of the supply chain, from farm to consumer, to efficiently match supply and demand. However, the quality and yield of potatoes are influenced by physiological changes during storage. Methods: This study tested the physiological and biochemical indices in three potato varieties (YunSu 108, YunSu 304 and YunSu 306) during their dormancy periods. Results: Three potato varieties with different dormancy periods were used to follow changes in starch, protein and several enzymes during storage. The starch and sugar content of the long-dormant variety (YunSu 108, LDV) were stable, whereas those of the short-dormant variety (YunSu 306, SDV) were variable. Starch synthase activity in the three varieties was initially high, then decreased; the starch content of LDV was relatively stable, that of the medium-dormant variety (YunSu 304, MDV) increased with storage time and peaked at sprouting, and that of SDV was low but variable. The sucrose synthase activity of LDV was significantly higher (p < 0.05) than MDV and SDV in the middle storage period. Two spikes were observed in the invertase activity of SDV, whereas those of MDV and LDV were stable. The reducing sugar content of LDV increased significantly before sprouting, that of MDV slowly decreased and that of SDV dropped sharply. During the whole storage period, pectinase activity in LDV did not change significantly, whereas pectinase in MDV and SDV decreased. The cellulase and protein contents initially increased and then decreased in LDV, and steadily decreased in MDV and SDV. Conclusion: The metabolic indices related to starch and sugar in the LDV were relatively stable during storage, whereas those of the SDV varied greatly. SDV showed increased sucrose, reducing sugars and cellulose; LDV PCA plots clustered in the positive quadrant of PC1 and the negative quadrant of PC2, with increased protein, sucrose synthase and starch; MDV had increased soluble starch synthase.


Assuntos
Solanum tuberosum , Sintase do Amido , Poligalacturonase , Amido , Sacarose
16.
J Phys Chem Lett ; 14(34): 7744-7750, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37607348

RESUMO

In two-dimensional magnets, the ultrafast photoexcited method represents a low-power and high-speed method of switching magnetic states. Bilayer CrI3 (BLC) is an ideal platform for studying ultrafast photoinduced magnetic phase transitions due to its stacking-dependent magnetic properties. Here, by using time-dependent density functional theory, we explore the photoexcitation phase transition in BLC from the R- to M-stacked phase. This process is found to be induced by electron-phonon interactions. The activated Ag and Bg phonon modes in the xy direction drive the horizontal relative displacements between the layers. The activated Ag mode in the z direction leads to a transition potential reduction. Furthermore, this phase transition can invert the sign of the interlayer spin interaction, indicating a photoinduced transition from ferromagnet to antiferromagnet. This investigation has profound implications for magnetic phase engineering strategies.

17.
PLoS One ; 18(8): e0289846, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585397

RESUMO

Accurate prediction of surface subsidence is of significance for analyzing the pattern of mining-induced surface subsidence, and for mining under buildings, railways, and water bodies. To address the problem that the existing prediction models ignore the correlation between subsidence points, resulting in large prediction errors, a Multi-point Relationship Fusion prediction model based on Graph Convolutional Networks (MRF-GCN) for mining-induced subsidence was proposed. Taking the surface subsidence in 82/83 mining area of Yuandian No. 2 Mine in Anhui Province in eastern China as an example, the surface deformation data obtained from 250 InSAR images captured by Sentinel-1A satellite from 2018 to 2022, combined with GNSS observation data, were used for modeling. The deformation pattern of each single observation point was obtained by feeding their deformation observation data into the LSTM encoder, after that, the relationship graph was created based on the correlation between points in the observation network and MRF-GCN was established. Then the prediction results came out through a nonlinear activation function of neural network. The research shows that the R2R2 value of MRF-GCN model was 0.865 0, much larger than that of Long-Short Term Memory (LSTM) and other conventional models, while mean square error (MSE) of MRF-GCN model was 1.59 899, much smaller than that of LSTM and other conventional models. Therefore, the MRF-GCN model has better prediction accuracy than other models and can be applied to predicting surface subsidence in large areas.


Assuntos
Minas de Carvão , Redes Neurais de Computação , China
18.
Environ Sci Pollut Res Int ; 30(42): 96040-96054, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37561305

RESUMO

Water, energy and food are inextricably linked in agricultural system. Social and environmental issues arising from socio-economic development pose new challenges for sustainable agricultural development. Achieving sustainable agriculture from the perspective of water, energy and food resource conservation is of critical importance to the national strategy for high-quality development of the Yellow River Basin in China. In this study, the mass productivity and economic productivity of water and energy in agricultural system were considered, and an integrated assessment index system for agricultural system based on the Water-Energy-Food Nexus (WEFN) was proposed in three dimensions: reliability, coordination and resilience. Based on these indicators, the agricultural water-energy-food nexus index (AWEFNI) and integrated risk index (IRI) were performed to assess the current status of agricultural development in the middle and upper reaches of the Yellow River. Results indicate that the AWEFNI in the middle and upper reaches of the Yellow River is increasing year by year, and the level of sustainable agricultural development is improving, but the overall level is lower. The AWEFNI values vary widely among provinces. The reliability of single subsystem in the study area accounts for more than 1/3 of the AWEFNI, with poor water endowment, rich food and energy resource endowments, the coordination of the AWEFN is weakening. The resilience of the third subsystem is gradually declining. The contradiction in water and energy supply and demand in Ningxia is the most prominent among the five provinces, and the level of AWEFN development is the lowest, so the regulation policies should be implemented as soon as possible to promote the synergistic development of AWEFN around the region.


Assuntos
Abastecimento de Água , Água , Rios , Reprodutibilidade dos Testes , Agricultura , China
19.
Micromachines (Basel) ; 14(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37512733

RESUMO

This study aims to enhance surgical safety and facilitate patient recovery through the investigation of vibration-assisted micro-milling technology for bone-material removal. The primary objective is to reduce cutting force and improve surface quality. Initially, a predictive model is developed to estimate the cutting force during two-dimensional (2D) vibration-assisted micro-milling of bone material. This model takes into account the anisotropic structural characteristics of bone material and the kinematics of the milling tool. Subsequently, an experimental platform is established to validate the accuracy of the cutting-force model for bone material. Micro-milling experiments are conducted on bone materials, with variations in cutting direction, amplitude, and frequency, to assess their impact on cutting force. The experimental results demonstrate that selecting appropriate machining parameters can effectively minimize cutting force in 2D vibration-assisted micro-milling of bone materials. The insights gained from this study provide valuable guidance for determining cutting parameters in vibration-assisted micro-milling of bone materials.

20.
Micromachines (Basel) ; 14(7)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37512787

RESUMO

Given the rapid progress and widespread adoption of advanced energy storage devices, there has been a growing interest in aqueous capacitors that offer non-flammable properties and high safety standards. Consequently, extensive research efforts have been dedicated to investigating zinc anodes and low-cost carbonaceous cathode materials. Despite these efforts, the development of high-performance zinc-ion capacitors (ZICs) still faces challenges, such as limited cycling stability and low energy densities. In this study, we present a novel approach to address these challenges. We introduce a three-dimensional (3D) conductive porous carbon framework cathode combined with zinc anode cells, which exhibit exceptional stability and durability in ZICs. Our experimental results reveal remarkable cycling performance, with a capacity retention of approximately 97.3% and a coulombic efficiency of nearly 100% even after 10,000 charge-discharge cycles. These findings represent significant progress in improving the performance of ZICs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...