Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Res Sq ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38699329

RESUMO

In bacteria, algae, fungi, and plant cells, the wall must expand in concert with cytoplasmic biomass production, otherwise cells would experience toxic molecular crowding1,2 or lyse. But how cells achieve expansion of this complex biomaterial in coordination with biosynthesis of macromolecules in the cytoplasm remains unexplained3, although recent works have revealed that these processes are indeed coupled4,5. Here, we report a striking increase of turgor pressure with growth rate in E. coli, suggesting that the speed of cell wall expansion is controlled via turgor. Remarkably, despite this increase in turgor pressure, cellular biomass density remains constant across a wide range of growth rates. By contrast, perturbations of turgor pressure that deviate from this scaling directly alter biomass density. A mathematical model based on cell wall fluidization by cell wall endopeptidases not only explains these apparently confounding observations but makes surprising quantitative predictions that we validated experimentally. The picture that emerges is that turgor pressure is directly controlled via counterions of ribosomal RNA. Elegantly, the coupling between rRNA and turgor pressure simultaneously coordinates cell wall expansion across a wide range of growth rates and exerts homeostatic feedback control on biomass density. This mechanism may regulate cell wall biosynthesis from microbes to plants and has important implications for the mechanism of action of antibiotics6.

2.
Pestic Biochem Physiol ; 200: 105828, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582592

RESUMO

Soybean root rot is a worldwide soil-borne disease threatening soybean production, causing large losses in soybean yield and quality. Fusarium species are the most detrimental pathogens of soybean root rot worldwide, causing large production losses. Fusarium root rot has been frequently reported in Heilongjiang Province of China, but the predominant Fusarium species and the sensitivity of these pathogens to different fungicides remain unclear. In this study, diseased soybean roots were collected from 14 regions of Heilongjiang province in 2021 and 2022. A total of 144 isolates of Fusarium spp. were isolated and identified as seven distinct species: F. scirpi, F. oxysporum, F. graminearum, F. clavum, F. acuminatum, F. avenaceum, and F. sporotrichioide. F. scirpi and F. oxysporum had high separation frequency and strong pathogenicity. The sensitivity of Fusarium spp. to five different fungicides was determined. Mefentrifluconazole and fludioxonil showed good inhibitory effects, and the sensitivity to pydiflumetofen and phenamacril varied between Fusarium species. In particular, the activity of DMI fungicide prothioconazole was lower than that of mefentrifluconazole. Molecular docking showed that mefentrifluconazole mainly bound to CYP51C, but prothioconazole mainly bound to CYP51B. Furthermore, the sensitivity to prothioconazole only significantly decreased in ΔFgCYP51B mutant, and the sensitivity to mefentrifluconazole changed in ΔFgCYP51C and ΔFgCYP51A mutants. The results demonstrated that the predominant Fusarium species causing soybean root rot in Heilongjiang province were F. scirpi and F. oxysporum and DMI fungicides had differences in binding cavity due to the diversity of CYP51 proteins in Fusarium.


Assuntos
Fungicidas Industriais , Fusarium , Fungicidas Industriais/farmacologia , Fusarium/genética , Glycine max , Simulação de Acoplamento Molecular , China
3.
J Agric Food Chem ; 72(17): 9680-9690, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634420

RESUMO

Plant pathogens have frequently shown multidrug resistance (MDR) in the field, often linked to efflux and sometimes metabolism of fungicides. To investigate the potential role of metabolic resistance in B. cinerea strains showing MDR, the azoxystrobin-sensitive strain B05.10 and -resistant strain Bc242 were treated with azoxystrobin. The degradation half-life of azoxystrobin in Bc242 (9.63 days) was shorter than that in B05.10 (28.88 days). Azoxystrobin acid, identified as a metabolite, exhibited significantly lower inhibition rates on colony and conidia (9.34 and 11.98%, respectively) than azoxystrobin. Bc242 exhibited higher expression levels of 34 cytochrome P450s (P450s) and 11 carboxylesterase genes (CarEs) compared to B05.10 according to RNA-seq analysis. The expression of P450 genes Bcin_02g01260 and Bcin_12g06380, along with the CarEs Bcin_12g06360 in Saccharomyces cerevisiae, resulted in reduced sensitivity to various fungicides, including azoxystrobin, kresoxim-methyl, pyraclostrobin, trifloxystrobin, iprodione, and carbendazim. Thus, the mechanism of B. cinerea MDR is linked to metabolism mediated by the CarE and P450 genes.


Assuntos
Botrytis , Carboxilesterase , Sistema Enzimático do Citocromo P-450 , Farmacorresistência Fúngica , Proteínas Fúngicas , Fungicidas Industriais , Pirimidinas , Estrobilurinas , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Estrobilurinas/farmacologia , Estrobilurinas/metabolismo , Estrobilurinas/química , Pirimidinas/farmacologia , Pirimidinas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Botrytis/genética , Botrytis/efeitos dos fármacos , Carboxilesterase/metabolismo , Carboxilesterase/genética , Farmacorresistência Fúngica/genética , Doenças das Plantas/microbiologia , Metacrilatos/farmacologia , Metacrilatos/metabolismo
4.
PLoS Pathog ; 20(4): e1012138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38640110

RESUMO

Proper transcription orchestrated by RNA polymerase II (RNPII) is crucial for cellular development, which is rely on the phosphorylation state of RNPII's carboxyl-terminal domain (CTD). Sporangia, developed from mycelia, are essential for the destructive oomycetes Phytophthora, remarkable transcriptional changes are observed during the morphological transition. However, how these changes are rapidly triggered and their relationship with the versatile RNPII-CTD phosphorylation remain enigmatic. Herein, we found that Phytophthora capsici undergone an elevation of Ser5-phosphorylation in its uncanonical heptapeptide repeats of RNPII-CTD during sporangia development, which subsequently changed the chromosomal occupation of RNPII and primarily activated transcription of certain genes. A cyclin-dependent kinase, PcCDK7, was highly induced and phosphorylated RNPII-CTD during this morphological transition. Mechanistically, a novel DCL1-dependent microRNA, pcamiR1, was found to be a feedback modulator for the precise phosphorylation of RNPII-CTD by complexing with PcAGO1 and regulating the accumulation of PcCDK7. Moreover, this study revealed that the pcamiR1-CDK7-RNPII regulatory module is evolutionarily conserved and the impairment of the balance between pcamiR1 and PcCDK7 could efficiently reduce growth and virulence of P. capsici. Collectively, this study uncovers a novel and evolutionary conserved mechanism of transcription regulation which could facilitate correct development and identifies pcamiR1 as a promising target for disease control.


Assuntos
MicroRNAs , Phytophthora , RNA Polimerase II , Transcrição Gênica , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Fosforilação , MicroRNAs/metabolismo , MicroRNAs/genética , Phytophthora/patogenicidade , Phytophthora/genética , Phytophthora/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética
5.
J Fungi (Basel) ; 10(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38667931

RESUMO

The necrotrophic pathogen Botrytis cinerea infects a broad range of plant hosts and causes substantial economic losses to many crops. Although resistance to procymidone has been observed in the field, it remains uncertain why procymidone is usually involved in multidrug resistance (MDR) together with other fungicides. Nine mutants derived from the B. cinerea strain B05.10 through procymidone domestication exhibited high resistance factors (RFs) against both procymidone and fludioxonil. However, the fitness of the mutants was reduced compared to their parental strain, showing non-sporulation and moderate virulence. Furthermore, the RFs of these mutants to other fungicides, such as azoxystrobin, fluazinam, difenoconazole, and pyrimethanil, ranged from 10 to 151, indicating the occurrence of MDR. Transcriptive expression analysis using the quantitative polymerase chain reaction (qPCR) revealed that the mutants overexpressed ABC transporter genes, ranging from 2 to 93.7-fold. These mutants carried single-point mutations W647X, R96X, and Q751X within BcBos1 by DNA sequencing. These alterations in BcBos1 conferred resistance to procymidone and other fungicides in the mutants. Molecular docking analysis suggested distinct interactions between procymidone and Bos1 in the B. cinerea standard strain B05.10 or the resistant mutants, suggesting a higher affinity of the former towards binding with the fungicide. This study provides a comprehensive understanding of the biological characteristics of the resistant mutants and conducts an initial investigation into its fungicide resistance traits, providing a reference for understanding the causes of multidrug resistance of B. cinerea in the field.

6.
Pestic Biochem Physiol ; 201: 105876, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685244

RESUMO

Black shank, a devastating disease in tobacco production worldwide, is caused by the oomycete plant pathogen Phytophthora nicotianae. Fluopicolide is a pyridinylmethyl-benzamides fungicide with a unique mechanism of action and has been widely used for controlling a variety of oomycetes such as Plasmopara viticola, Phytophthora infestans, Pseudoperonospora cubensis, P. nicotianae and Bremia lactucae. However, the fluopicolide-resistance risk and molecular basis in P. nicotianae have not been reported. In this study, the sensitivity profile of 141 P. nicotianae strains to fluopicolide was determined, with a mean median effective concentration (EC50) value of 0.12 ± 0.06µg/mL. Five stable fluopicolide-resistant mutants of P. nicotianae were obtained by fungicide adaptation, and the compound fitness index of these resistant mutants were lower than that of their parental isolates. Additionally, cross-resistance tests indicated that the sensitivity of fluopicolide did not correlate with other oomycete fungicides, apart from fluopimomide. DNA sequencing revealed two point mutations, G765E and N769Y, in the PpVHA-a protein in the fluopicolide-resistant mutants. Transformation and expression of PpVHA-a genes carrying G765E and N769Y in the sensitive wild-type isolate confirmed that it was responsible for fluopicolide resistance. These results suggest that P. nicotianae has a low to medium resistance risk to fluopicolide in laboratory and that point mutations, G765E and N769Y, in PpVHA-a are associated with the observed fluopicolide resistance.


Assuntos
Fungicidas Industriais , Mutação , Nicotiana , Phytophthora , Doenças das Plantas , Phytophthora/efeitos dos fármacos , Phytophthora/genética , Nicotiana/microbiologia , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Benzamidas/farmacologia , Piridinas/farmacologia , Farmacorresistência Fúngica/genética
7.
Pestic Biochem Physiol ; 201: 105884, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685250

RESUMO

Botrytis cinerea is one of the most destructive pathogens worldwide. It can damage over 200 crops, resulting in significant yield and quality losses. Cyclobutrifluram, a new generation of succinate dehydrogenase inhibitors, exhibits excellent inhibitory activity against B. cinerea. However, the baseline sensitivity and resistance of B. cinerea to cyclobutrifluram remains poorly understood. This study was designed to monitor the sensitivity frequency distribution, assess the resistance risk, and clarify the resistance mechanism of B. cinerea to cyclobutrifluram. The baseline sensitivity of B. cinerea isolates to cyclobutrifluram was 0.89 µg/mL. Cyclobutrifluram-resistant B. cinerea populations are present in the field. Six resistant B. cinerea isolates investigated in this study possessed enhanced compound fitness index compared to the sensitive isolates according to mycelial growth, mycelial dry weight, conidiation, conidial germination rate, and pathogenicity. Cyclobutrifluram exhibited no cross-resistance with tebuconazole, fludioxonil, cyprodinil, or iprodione. Sequence alignment revealed that BcSDHB from cyclobutrifluram-resistant B. cinerea isolates had three single substitutions (P225F, N230I, or H272R). Molecular docking verified that these mutations in BcSDHB conferred cyclobutrifluram resistance in B. cinerea. In conclusion, the resistance risk of B. cinerea to cyclobutrifluram is high, and the point mutations in BcSDHB (P225F, N230I, or H272R) confer cyclobutrifluram resistance in B. cinerea. This study provided important insights into cyclobutrifluram resistance in B. cinerea and offered valuable information for monitoring and managing cyclobutrifluram resistance in the future.


Assuntos
Botrytis , Farmacorresistência Fúngica , Fungicidas Industriais , Norbornanos , Mutação Puntual , Pirazóis , Botrytis/efeitos dos fármacos , Botrytis/genética , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , China , Succinato Desidrogenase/genética , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia
8.
Nat Commun ; 15(1): 1967, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438368

RESUMO

Host-derived reactive oxygen species (ROS) are an important defense means to protect against pathogens. Although mitochondria are the main intracellular targets of ROS, how pathogens regulate mitochondrial physiology in response to oxidative stress remains elusive. Prohibitin 2 (PHB2) is an inner mitochondrial membrane (IMM) protein, recognized as a mitophagy receptor in animals and fungi. Here, we find that an ANK and FYVE domain-containing protein PsAF5, is an adapter of PsPHB2, interacting with PsATG8 under ROS stress. Unlike animal PHB2 that can recruit ATG8 directly to mitochondria, PsPHB2 in Phytophthora sojae cannot recruit PsATG8 to stressed mitochondria without PsAF5. PsAF5 deletion impairs mitophagy under ROS stress and increases the pathogen's sensitivity to H2O2, resulting in the attenuation of P. sojae virulence. This discovery of a PsPHB2-PsATG8 adapter (PsAF5) in plant-pathogenic oomycetes reveals that mitophagy induction by IMM proteins is conserved in eukaryotes, but with differences in the details of ATG8 recruitment.


Assuntos
Phytophthora , Animais , Peróxido de Hidrogênio , Mitofagia , Espécies Reativas de Oxigênio , Mitocôndrias , Proteínas de Membrana , Oligonucleotídeos
9.
Org Lett ; 26(11): 2309-2314, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38466078

RESUMO

2-Alkylpyridines are a privileged scaffold throughout the realm of organic synthesis and play a key role in natural products, pharmaceuticals, and agrochemicals. Herein, we report the first B-alkyl Suzuki cross-coupling of 2-pyridyl ammonium salts to access functionalized 2-alkylpyridines. The use of well-defined, operationally simple Pd-NHCs permits for an exceptionally broad scope of the challenging B-alkyl C-N cross-coupling with organoboranes containing ß-hydrogen, representing a novel method for the discovery of highly sought-after molecules for plant protection.

10.
Pestic Biochem Physiol ; 199: 105786, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458686

RESUMO

Ipconazole is a broad-spectrum triazole fungicide that is highly effective against Fusarium pseudograminearum. However, its risk of developing resistance and mechanism are not well understood in F. pseudograminearum. Here, the sensitivities of 101 F. pseudograminearum isolates to ipconazole were investigated, and the average EC50 value was 0.1072 µg/mL. Seven mutants resistant to ipconazole were obtained by fungicide adaption, with all but one showing reduced fitness relative to the parental isolates. Cross-resistance was found between ipconazole and mefentrifluconazole and tebuconazole, but none between ipconazole and pydiflumetofen, carbendazim, fludioxonil, or phenamacril. In summary, these findings suggest that there is a low risk of F. pseudograminearum developing resistance to ipconazole. Additionally, a point mutation, G464S, was seen in FpCYP51B and overexpression of FpCYP51A, FpCYP51B and FpCYP51C was observed in ipconazole-resistant mutants. Assays, including transformation and molecular docking, indicated that G464S conferred ipconazole resistance in F. pseudograminearum.


Assuntos
Fungicidas Industriais , Fusarium , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Simulação de Acoplamento Molecular , Fusarium/genética , Desmetilação , Doenças das Plantas
11.
Pestic Biochem Physiol ; 199: 105795, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458689

RESUMO

Fusarium head blight in wheat is caused by Fusarium graminearum, resulting in significant yield losses and grain contamination with deoxynivalenol (DON), which poses a potential threat to animal health. Cyclobutrifluram, a newly developed succinate dehydrogenase inhibitor, has shown excellent inhibition of Fusarium spp. However, the resistance risk of F. graminearum to cyclobutrifluram and the molecular mechanism of resistance have not been determined. In this study, we established the average EC50 of a range of F. graminearum isolates to cyclobutrifluram to be 0.0110 µg/mL. Six cyclobutrifluram-resistant mutants were obtained using fungicide adaptation. All mutants exhibited impaired fitness relative to their parental isolates. This was evident from measurements of mycelial growth, conidiation, conidial germination, virulence, and DON production. Interestingly, cyclobutrifluram did not seem to affect the DON production of either the sensitive isolates or the resistant mutants. Furthermore, a positive cross-resistance was observed between cyclobutrifluram and pydiflumetofen. These findings suggest that F. graminearum carries a moderate to high risk of developing resistance to cyclobutrifluram. Additionally, point mutations H248Y in FgSdhB and A73V in FgSdhC1 of F. graminearum were observed in the cyclobutrifluram-resistant mutants. Finally, an overexpression transformation assay and molecular docking indicated that FgSdhBH248Y or FgSdhC1A73V could confer resistance of F. graminearum to cyclobutrifluram.


Assuntos
Fungicidas Industriais , Fusarium , Fungicidas Industriais/farmacologia , Simulação de Acoplamento Molecular , Micélio , Doenças das Plantas
12.
J Agric Food Chem ; 72(12): 6691-6701, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498985

RESUMO

To accelerate the development of novel fungicides, a variety of N-(pyrazol-5-yl)benzamide derivatives with a diphenylamine moiety were designed and synthesized using a pharmacophore recombination strategy based on the structure of pyrazol-5-yl-aminophenyl-benzamides. The bioassay results demonstrated that most of the target compounds had excellent in vitro antifungal activities against Sclerotinia sclerotiorum, Valsa mali, and Botrytis cinerea. In particular, compound 5IIIh exhibited remarkable activity against S. sclerotiorum (EC50 = 0.37 mg/L), which was similar to that of fluxapyroxad (EC50 = 0.27 mg/L). In addition, compound 5IIIc (EC50 = 1.32 mg/L) was observed to be more effective against V. mali than fluxapyroxad (EC50 = 12.8 mg/L) and comparable to trifloxystrobin (EC50 = 1.62 mg/L). Furthermore, compound 5IIIh demonstrated remarkable in vivo protective antifungal properties against S. sclerotiorum, with an inhibition rate of 96.8% at 100 mg/L, which was close to that of fluxapyroxad (99.6%). Compounds 5IIIc (66.7%) and 5IIIh (62.9%) exhibited good in vivo antifungal effects against V. mali at 100 mg/L, which were superior to that of fluxapyroxad (11.1%) but lower than that of trifloxystrobin (88.9%). The succinate dehydrogenase (SDH) enzymatic inhibition assay was conducted to confirm the mechanism of action. Molecular docking analysis further revealed that compound 5IIIh has significant hydrogen-bonding, π-π, and p-π conjugation interactions with ARG 43, SER 39, TRP 173, and TYR 58 in the binding site of SDH, and the binding mode was similar to that of the commercial fungicide fluxapyroxad. All of the results suggest that compound 5IIIh could be a potential SDH inhibitor, offering a valuable reference for future studies.


Assuntos
Acetatos , Amidas , Antifúngicos , Fungicidas Industriais , Iminas , Estrobilurinas , Relação Estrutura-Atividade , Antifúngicos/farmacologia , Difenilamina/química , Simulação de Acoplamento Molecular , Fungicidas Industriais/química , Benzamidas , Succinato Desidrogenase
13.
Pestic Biochem Physiol ; 198: 105719, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225065

RESUMO

The cucumber target spot, caused by Corynespora cassiicola, is a major cucumber disease in China. Mefentrifluconazole, a new triazole fungicide, exhibits remarkable efficacy in controlling cucumber target spot. However, the resistance risk and mechanism remain unclear. In this study, the inhibitory activity of mefentrifluconazole against 101 C. cassiicola isolates was determined, and the results indicated that the EC50 values ranged between 0.15 and 12.85 µg/mL, with a mean of 4.76 µg/mL. Fourteen mefentrifluconazole-resistant mutants of C. cassiicola were generated from six parental isolates in the laboratory through fungicide adaptation or UV irradiation. The resistance was relatively stable after ten consecutive transfers on a fungicide-free medium. No cross-resistance was observed between mefentrifluconazole and pyraclostrobin, fluopyram, prochloraz, mancozeb, or difenoconazole. Investigations into the biological characteristics of the resistant mutants revealed that six resistant mutants exhibited an enhanced compound fitness index (CFI) compared to the parental isolates, while others displayed a reduced or comparable CFI. The overexpression of CcCYP51A and CcCYP51B was detected in the resistant mutants, regardless of the presence or absence of mefentrifluconazole. Additionally, a two-way mixture of mefentrifluconazole and prochloraz at a concentration of 7:3 demonstrated superior control efficacy against the cucumber target spot, achieving a protection rate of 80%. In conclusion, this study suggests that the risk of C. cassiicola developing resistance to mefentrifluconazole is medium, and the overexpression of CcCYP51A and CcCYP51B might be associated with mefentrifluconazole resistance in C. cassiicola. The mefentrifluconazole and prochloraz two-way mixture presented promising control efficacy against the cucumber target spot.


Assuntos
Ascomicetos , Cucumis sativus , Fluconazol/análogos & derivados , Fungicidas Industriais , Imidazóis , Fungicidas Industriais/farmacologia
14.
Pestic Biochem Physiol ; 198: 105747, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225090

RESUMO

Ametoctradin is mainly used to treat plant oomycetes diseases, but the mechanism and resistance risk of ametoctradin in Phytophthora sojae remain unknown. This study determined the ametoctradin sensitivity of 106 P. sojae isolates and found that the frequency distribution of the median effective concentration (EC50) of ametoctradin was unimodal with a mean value of 0.1743 ± 0.0901 µg/mL. Furthermore, ametoctradin-resistant mutants had a substantially lower fitness index compared with that of wild-type isolates. Although ametoctradin did not show cross-resistance to other fungicides, negative cross-resistance to amisulbrom was found. In comparison to sensitive isolates, the control efficacy of ametoctradin to resistant mutants was lower, implying a low to moderate ametoctradin resistance risk in P. sojae. All ametoctradin-resistant mutants contained a S33L point mutation in PsCytb. A system with overexpression of PsCytb in the nucleus was established. When we ectopically overexpressed S33L-harboring PsCytb, P. sojae developed ametoctradin resistance. We hypothesized that the observed negative resistance between ametoctradin and amisulbrom could be attributed to conformational changes in the binding cavity of PsCytb at residues 33 and 220.


Assuntos
Phytophthora , Triazóis , Mutação Puntual , Pirimidinas , Doenças das Plantas/genética
15.
J Agric Food Chem ; 72(5): 2492-2500, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38271672

RESUMO

Structural diversity derivatization from natural products is an important and effective method of discovering novel green pesticides. Cinnamic acids are abundant in plants, and their unparalleled structures endow them with various excellent biological activities. A series of novel cinnamic oxime esters were designed and synthesized to develop high antifungal agrochemicals. The antifungal activity, structure-activity relationship, and action mechanism were systematically studied. Compounds 7i, 7u, 7v, and 7x exhibited satisfactory activity against Gaeumannomyces graminis var. tritici, with inhibition rates of ≥90% at 50 µg/mL. Compounds 7z and 7n demonstrated excellent activities against Valsa mali and Botrytis cinerea, with median effective concentration (EC50) values of 0.71 and 1.41 µg/mL, respectively. Compound 7z exhibited 100% protective and curative activities against apple Valsa canker at 200 µg/mL. The control effects of 7n against gray mold on tomato fruits and leaves were all >96%, exhibiting superior or similar effects to those of the commercial fungicide boscalid. Furthermore, the quantitative structure-activity relationship was established to guide the further design of higher-activity compounds. The preliminary results on the action mechanism revealed that 7n treatment could disrupt the function of the nucleus and mitochondria, leading to reactive oxygen species accumulation and cell membrane damage. Its primary biochemical mechanism may be inhibiting fungal ergosterol biosynthesis. The novel structure, simple synthesis, and excellent activity of cinnamic oxime esters render them promising potential fungicides.


Assuntos
Ascomicetos , Cinamatos , Fungicidas Industriais , Fungicidas Industriais/química , Antifúngicos/farmacologia , Relação Estrutura-Atividade , Relação Quantitativa Estrutura-Atividade , Oximas/farmacologia , Botrytis
16.
mBio ; 15(2): e0223723, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38259067

RESUMO

Fungicides are an effective way to control gray mold of grapes, but the pathogen Botrytis cinerea can develop resistance, overcoming the effectiveness of a fungicide that is repeatedly applied. More importantly, the emergence of multidrug resistance (MDR) in the field, where multiple fungicides with different modes of action simultaneously lose their efficacies, is a significant concern. MDR is associated with ATP-binding cassette (ABC) transporters of the pathogen, and certain plant secondary metabolites (PSMs) stimulate the upregulation of ABC transporters, we hypothesized that the pathogen's preadaptation to PSMs might contribute to MDR development. To test this in B. cinerea, ten PSMs, namely, resveratrol, reserpine, chalcone, flavanone, eugenol, farnesol, anethene, camptothecin, salicylic acid, and psoralen, were selected based on their association with ABC transporters involved in fungicide resistance. B. cinerea strain B05.10 was continuously transferred for 15 generations on potato dextrose agar amended with a PSM (PDAP), and sensitivities to PSMs and fungicides were examined on the 5th, 10th, and 15th generations. RNA was extracted from B. cinerea from the selected generations. After 15 generations of culture transfers, an up-regulation was observed in the expression of ABC transporter-encoding genes BcatrB, BcatrD, and BcatrK using quantitative polymerase chain reaction (qPCR). This upregulation was found to contribute to MDR of B. cinerea against two or more fungicides, among azoxystrobin, boscalid, fludioxonil, difenoconazole, prochloraz, and pyrimethanil. This finding was confirmed through genetic transformation. The decreased sensitivity of B. cinerea to fungicides was confirmed as a subsequent MDR phenotype after exposure to camptothecin, flavanone, and resveratrol. Besides, transcriptome analysis also revealed the upregulation of transcription factors related to ABC expression following resveratrol exposure. This suggests that PSMs contributed to inducing preadaptation of B. cinerea, leading to subsequent MDR.IMPORTANCEThe emergence of MDR in plant pathogens is a threat to plant disease management and leads to the use of excessive fungicides. Botrytis cinerea is of particular concern because its MDR has widely emerged in the field. Understanding its genesis is the first step for controlling MDR. In this study, the contribution of PSMs to MDR has been examined. Effective management of this pathogen in agroecosystems relies on a better understanding of how it copes with phytochemicals or fungicides.


Assuntos
Botrytis , Flavanonas , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Resveratrol , Resistência a Múltiplos Medicamentos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Camptotecina , Doenças das Plantas , Farmacorresistência Fúngica/genética
17.
J Agric Food Chem ; 72(3): 1527-1538, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38193425

RESUMO

An estimated 240 fungicides are presently in use, but the direct targets for the majority remain elusive, constraining fungicide development and efficient resistance monitoring. In this study, we found that Pcα-actinin knockout did not influence the sensitivity of Phytophthora capsici to fluopicolide, which is a notable oomycete inhibitor. Using a combination of Bulk Segregant Analysis Sequencing and Drug Affinity Responsive Target Stability (DARTS) assays, the vacuolar H+-ATPase subunit a (PcVHA-a) was pinpointed as the target protein of fluopicolide. We also confirmed four distinct point mutations in PcVHA-a responsible for fluopicolide resistance in P. capsici through site-directed mutagenesis. Molecular docking, ATPase activity assays, and a DARTS assay suggested a fluopicolide-PcVHA-a interaction. Sequence analysis and further molecular docking validated the specificity of fluopicolide for oomycetes or fish. These findings support the claim that PcVHA-a is the target of fluopicolide, proposing vacuolar H+-ATPase as a promising target for novel fungicide development.


Assuntos
Fungicidas Industriais , Phytophthora , Fungicidas Industriais/farmacologia , Simulação de Acoplamento Molecular , Benzamidas/metabolismo , Phytophthora/genética , ATPases Translocadoras de Prótons/metabolismo , Doenças das Plantas
18.
J Agric Food Chem ; 72(3): 1516-1526, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38194482

RESUMO

Mefentrifluconazole, a triazole fungicide, exhibits remarkable efficacy in combating Fusarium spp. The mean EC50 value of mefentrifluconazole against 124 isolates of Fusarium pseudograminearum was determined to be 1.06 µg/mL in this study. Fungicide taming produced five mefentrifluconazole-resistant mutants with resistance factors ranging from 19.21 to 111.34. Compared to the original parental isolates, the fitness of three resistant mutants was much lower, while the remaining two mutants displayed enhanced survival fitness. There was evidence of positive cross-resistance between tebuconazole and mefentrifluconazole. Mefentrifluconazole resistance in F. pseudograminearum can be conferred by FpCYP51BL144F, which was identified in four mutants according to molecular docking and site-directed transformation experiments. Overexpression of FpCYP51s was also detected in the resistant mutants. In conclusion, mefentrifluconazole has a low-to-medium resistance risk in F. pseudograminearum, and the L144F mutation in FpCYP51B and the increased expression level of FpCYP51s may be responsible for mefentrifluconazole resistance in F. pseudograminearum.


Assuntos
Fluconazol/análogos & derivados , Fungicidas Industriais , Fusarium , Fusarium/genética , Mutação Puntual , Simulação de Acoplamento Molecular , Doenças das Plantas
19.
mBio ; 15(3): e0317723, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38294217

RESUMO

Multi-fungicide resistance (MFR) is a serious environmental problem, which results in the excessive use of fungicides. Fitness penalty, as a common phenomenon in MFR, can partially counteract the issue of resistance due to the weakened vigor of MFR pathogens. Their underlying mechanism and relationship remain unexplained. By Oxford Nanopore Technologies sequencing and dot blot, we found that N6-methyloxyadenine (6mA) modification, the dominate epigenetic marker in Phytophthora capsici, was significantly altered after MFR emerged. Among the differently methylated genes, PcGSTZ1 could efficiently detoxify SYP-14288, a novel uncoupler, through complexing the fungicide with glutathione and induce MFR. Interestingly, PcGSTZ1 overexpression was induced by elevated 6mA levels and chromatin accessibility to its genomic loci. Moreover, the overexpression led to reactive oxygen species burst and ferroptosis in SYP-14288-resistant mutants, which enhanced the resistance and induced fitness penalty in P. capsici through triggering low energy shock adaptive response. Furthermore, this study revealed that the 6mA-PcGSTZ1-ferroptosis axis could mediate intergenerational resistance memory transmission and enabled adaptive advantage to P. capsici. In conclusion, the findings provide new insights into the biological role of 6mA as well as the mechanisms underlying the trade-off between MFR and fitness. These could also benefit disease control through the blockade of the epigenetic axis to resensitize resistant isolates.IMPORTANCEN6-methyloxyadenine (6mA) modification on DNA is correlated with tolerance under different stress in prokaryotes. However, the role of 6mA in eukaryotes remains poorly understood. Our current study reveals that DNA adenine methyltransferase 1 (DAMT1)-mediated 6mA modification at the upstream region of GST zeta 1 (GSTZ1) is elevated in the resistant strain. This elevation promotes the detoxification uncoupler and induces multifungicide resistance (MFR). Moreover, the overexpression led to reactive oxygen species burst and ferroptosis in SYP-14288-resistant mutants, which enhanced the resistance and induced fitness penalty in Phytophthora capsici through triggering low energy shock adaptive response. Furthermore, this study revealed that the 6mA-PcGSTZ1-ferroptosis axis could mediate intergenerational resistance memory transmission and enabled adaptive advantage to P. capsici. Overall, our findings uncover an innovative mechanism underlying 6mA modification in regulating PcGSTZ1 transcription and the ferroptosis pathway in P. capsici.


Assuntos
Ferroptose , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Espécies Reativas de Oxigênio , Genoma , DNA
20.
PLoS Biol ; 22(1): e3002453, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38180950

RESUMO

To achieve a stable size distribution over multiple generations, proliferating cells require a means of counteracting stochastic noise in the rate of growth, the time spent in various phases of the cell cycle, and the imprecision in the placement of the plane of cell division. In the most widely accepted model, cell size is thought to be regulated at the G1/S transition, such that cells smaller than a critical size pause at the end of G1 phase until they have accumulated mass to a predetermined size threshold, at which point the cells proceed through the rest of the cell cycle. However, a model, based solely on a specific size checkpoint at G1/S, cannot readily explain why cells with deficient G1/S control mechanisms are still able to maintain a very stable cell size distribution. Furthermore, such a model would not easily account for stochastic variation in cell size during the subsequent phases of the cell cycle, which cannot be anticipated at G1/S. To address such questions, we applied computationally enhanced quantitative phase microscopy (ceQPM) to populations of cultured human cell lines, which enables highly accurate measurement of cell dry mass of individual cells throughout the cell cycle. From these measurements, we have evaluated the factors that contribute to maintaining cell mass homeostasis at any point in the cell cycle. Our findings reveal that cell mass homeostasis is accurately maintained, despite disruptions to the normal G1/S machinery or perturbations in the rate of cell growth. Control of cell mass is generally not confined to regulation of the G1 length. Instead mass homeostasis is imposed throughout the cell cycle. In the cell lines examined, we find that the coefficient of variation (CV) in dry mass of cells in the population begins to decline well before the G1/S transition and continues to decline throughout S and G2 phases. Among the different cell types tested, the detailed response of cell growth rate to cell mass differs. However, in general, when it falls below that for exponential growth, the natural increase in the CV of cell mass is effectively constrained. We find that both mass-dependent cell cycle regulation and mass-dependent growth rate modulation contribute to reducing cell mass variation within the population. Through the interplay and coordination of these 2 processes, accurate cell mass homeostasis emerges. Such findings reveal previously unappreciated and very general principles of cell size control in proliferating cells. These same regulatory processes might also be operative in terminally differentiated cells. Further quantitative dynamical studies should lead to a better understanding of the underlying molecular mechanisms of cell size control.


Assuntos
Ciclo Celular , Humanos , Divisão Celular , Tamanho Celular , Proliferação de Células , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...