Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol ; 92(5): 651-7, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27499076

RESUMO

The synthesis of Zn-doped TiO2 nanoparticles by solgel method was investigated in this study, as well as its modification by H2 O2 . The catalyst was characterized by transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller, UV-visible reflectance spectra and X-ray photoelectron spectroscopy (XPS). The results indicated that doping Zn into TiO2 nanoparticles could inhibit the transformation from anatase phase to rutile phase. Zn existed as the second valence oxidation state in the Zn-doped TiO2 . Zn-doped TiO2 that was synthesized by 5% Zn doping at 450°C exhibited the best photocatalytic activity. Then, the H2 O2 modification further enhanced the photocatalytic activity. Zn doping and H2 O2 modifying narrowed the band gap and efficiently increased the optical absorption in visible region. The optimal degradation rate of tetracycline by Zn-doped TiO2 and H2 O2 modified Zn-doped TiO2 was 85.27% and 88.14%. Peroxide groups were detected in XPS analysis of H2 O2 modified Zn-doped TiO2 , favoring the adsorption of visible light. Furthermore, Zn-doped TiO2 modified by H2 O2 had relatively good reusability, exhibiting a potential practical application for tetracycline's photocatalytic degradation.


Assuntos
Luz , Nanopartículas/química , Tetraciclinas/metabolismo , Titânio/química , Zinco/química , Catálise , Processos Fotoquímicos , Tetraciclinas/química , Difração de Raios X
2.
Water Sci Technol ; 68(4): 934-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23985527

RESUMO

Incomplete oxidation of titanium nitride (TiN) to prepare nitrogen-doped TiO2 was verified by calcining TiN at different temperatures in air for 30 min. The as-prepared samples were characterized by X-ray diffraction, UV-Vis diffuse reflectance spectra and X-ray photoelectron spectroscopy. The results confirmed that oxidizing TiN incompletely is an effective and simple method to prepare nitrogen-doped TiO2. Photocatalytic degradation of phenol was conducted to evaluate the photocatalytic activity of as-prepared samples. The results showed that phenol can be degraded efficiently by the as-prepared samples under visible light; low phenol concentration was conducive to degradation; the optimum calcination temperature and photocatalyst dosage are 650 °C and 0.5 g/L, respectively. The effects of different light sources on phenol degradation were compared. The reusability of nitrogen-doped TiO2 was tested and the results indicated a relatively good reusability under laboratory conditions.


Assuntos
Nitrogênio/química , Fenol/química , Titânio/química , Oxirredução , Luz Solar , Fatores de Tempo , Poluentes Químicos da Água/química , Purificação da Água/métodos
3.
J Hazard Mater ; 170(1): 163-8, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19482421

RESUMO

The photochemistry of para-chlorophenol (4-CP) under UV irradiation by using a 125-W high-pressure mercury lamp as light source with the presence of nitrite in a solid water ice matrix had been studied. The experiments were carried out in a photochemical cold chamber reactor at -14 to -12 degrees C. Each influence factor of the 4-CP photoconversion kinetics in the water ice was inspected. The results show that the 4-CP photoconversion obeys the first-order kinetics model and the initial concentration of 4-CP, the initial concentration of nitrite, pH value, light intensity, inorganic ions and the water quality all have significant influence on the photoconversion rate. In addition, nine intermediate products were characterized by GC-MS, HPLC-ESI-MS and HPLC techniques and the possible photoconversion mechanism was proposed accordingly. It is concluded that the mechanism and photoproducts of 4-CP photolysis in ice are changed due to the presence of NO(2)(-).


Assuntos
Clorofenóis/química , Nitritos/química , Fotólise , Temperatura Baixa , Gelo , Cinética , Raios Ultravioleta , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA