Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Adv Res ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609051

RESUMO

The multicellular trichomes of cucumber (Cucumis sativus L.) serve as the primary defense barrier against external factors, whose impact extends beyond plant growth and development to include commercial characteristics of fruits. The aphid (Aphis gossypii Glover) is one of prominent pests in cucumber cultivation. However, the relationship between physical properties of trichomes and the aphid resistance at molecular level remains largely unexplored. Here, a spontaneous mutant trichome morphology (tm) was characterized by increased susceptibility towards aphid. Further observations showed the tm exhibited a higher and narrower trichome base, which was significantly distinguishable from that in wild-type (WT). We conducted map-based cloning and identified the candidate, CsTM, encoding a C-lectin receptor-like kinase. The knockout mutant demonstrated the role of CsTM in trichome morphogenesis. The presence of SNP does not regulate the relative expression of CsTM, but diminishes the CsTM abundance of membrane proteins in tm. Interestingly, CsTM was found to interact with CsTIP1;1, which encodes an aquaporin with extensive reports in plant resistance and growth development. The subsequent aphid resistance experiments revealed that both CsTM and CsTIP1;1 regulated the development of trichomes and conferred resistance against aphid by affecting cytoplasmic H2O2 contents. Transcriptome analysis revealed a significant enrichment of genes associated with pathogenesis, calcium binding and cellulose synthase. Overall, our study elucidates an unidentified mechanism that CsTM-CsTIP1;1 alters multicellular trichome morphology and enhances resistance against aphid, thus providing a wholly new perspective for trichome morphogenesis in cucumber.

2.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673993

RESUMO

Cucumber (Cucumis sativus L.) is a globally prevalent and extensively cultivated vegetable whose yield is significantly influenced by various abiotic stresses, including drought, heat, and salinity. Transcription factors, such as zinc finger-homeodomain proteins (ZHDs), a plant-specific subgroup of Homeobox, play a crucial regulatory role in stress resistance. In this study, we identified 13 CsZHDs distributed across all six cucumber chromosomes except chromosome 7. Phylogenetic analysis classified these genes into five clades (ZHDI-IV and MIF) with different gene structures but similar conserved motifs. Collinearity analysis revealed that members of clades ZHD III, IV, and MIF experienced amplification through segmental duplication events. Additionally, a closer evolutionary relationship was observed between the ZHDs in Cucumis sativus (C. sativus) and Arabidopsis thaliana (A. thaliana) compared to Oryza sativa (O. sativa). Quantitative real-time PCR (qRT-PCR) analysis demonstrated the general expression of CsZHD genes across all tissues, with notable expression in leaf and flower buds. Moreover, most of the CsZHDs, particularly CsZHD9-11, exhibited varying responses to drought, heat, and salt stresses. Virus-induced gene silencing (VIGS) experiments highlighted the potential functions of CsZHD9 and CsZHD10, suggesting their positive regulation of stomatal movement and responsiveness to drought stress. In summary, these findings provide a valuable resource for future analysis of potential mechanisms underlying CsZHD genes in response to stresses.


Assuntos
Cucumis sativus , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Cucumis sativus/genética , Cucumis sativus/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética , Secas , Cromossomos de Plantas/genética , Perfilação da Expressão Gênica
4.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38138999

RESUMO

Pre-harvest sprouting (PHS), the germination of seeds on the plant prior to harvest, poses significant challenges to agriculture. It not only reduces seed and grain yield, but also impairs the commodity quality of the fruit, ultimately affecting the success of the subsequent crop cycle. A deeper understanding of PHS is essential for guiding future breeding strategies, mitigating its impact on seed production rates and the commercial quality of fruits. PHS is a complex phenomenon influenced by genetic, physiological, and environmental factors. Many of these factors exert their influence on PHS through the intricate regulation of plant hormones responsible for seed germination. While numerous genes related to PHS have been identified in food crops, the study of PHS in vegetable crops is still in its early stages. This review delves into the regulatory elements, functional genes, and recent research developments related to PHS in vegetable crops. Meanwhile, this paper presents a novel understanding of PHS, aiming to serve as a reference for the study of this trait in vegetable crops.


Assuntos
Melhoramento Vegetal , Verduras , Verduras/genética , Germinação/genética , Fenótipo , Sementes/genética
5.
Mol Hortic ; 3(1): 22, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37899482

RESUMO

We previously reported that ABA inhibits stomatal closure through AtNAP-SAG113 PP2C regulatory module during leaf senescence. The mechanism by which this module exerts its function is unknown. Here we report the identification and functional analysis of SAG114, a direct target of the regulatory module. SAG114 encodes SnRK3.25. Both bimolecular fluorescence complementation (BiFC) and yeast two-hybrid assays show that SAG113 PP2C physically interacts with SAG114 SnRK3.25. Biochemically the SAG113 PP2C dephosphorylates SAG114 in vitro and in planta. RT-PCR and GUS reporter analyses show that SAG114 is specifically expressed in senescing leaves in Arabidopsis. Functionally, the SAG114 knockout mutant plants have a significantly bigger stomatal aperture and a much faster water loss rate in senescing leaves than those of wild type, and display a precocious senescence phenotype. The premature senescence phenotype of sag114 is epistatic to sag113 (that exhibits a remarkable delay in leaf senescence) because the sag113 sag114 double mutant plants show an early leaf senescence phenotype, similar to that of sag114. These results not only demonstrate that the ABA-AtNAP-SAG113 PP2C regulatory module controls leaf longevity by dephosphorylating SAG114 kinase, but also reveal the involvement of the SnRK3 family gene in stomatal movement and water loss during leaf senescence.

6.
Hortic Res ; 10(9): uhad145, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37691965

RESUMO

Plant growth and development are controlled by a complex gene regulatory network, which is currently a focal point of research. It has been established that epigenetic factors play a crucial role in plant growth. Trichomes, specialized appendages that arise from epidermal cells, are of great significance in plant growth and development. As a model system for studying plant development, trichomes possess both commercial and research value. Epigenetic regulation has only recently been implicated in the development of trichomes in a limited number of studies, and microRNA-mediated post-transcriptional regulation appears to dominate in this context. In light of this, we have conducted a review that explores the interplay between epigenetic regulations and the formation of plant trichomes, building upon existing knowledge of hormones and transcription factors in trichome development. Through this review, we aim to deepen our understanding of the regulatory mechanisms underlying trichome formation and shed light on future avenues of research in the field of epigenetics as it pertains to epidermal hair growth.

7.
Comput Biol Med ; 165: 107400, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37651767

RESUMO

After infection with SARS-CoV-2, the microbiome inside the human body changes dramatically. By re-annotating microbial sequences in bulk RNA-seq and scRNA-seq data of COVID-19 patients, we described the cellular microbial landscape of COVID-19 patients and identified characteristic microorganisms in various tissues. We found that Acinetobacter lwoffii was highly correlated with COVID-19 symptoms and might disrupt some pathways of patients by interacting with the host and other microbes, such as Klebsiella pneumoniae. We further identified characteristic microorganisms specific to cell type, indicating the enrichment preference of some microbes. We also revealed the co-infection of SARS-CoV-2 with hMPV, which may cause the development of COVID-19. Overall, we demonstrated that the presence of intracellular microorganisms in COVID-19 patients and the synergies between microorganisms were strongly correlated with disease progression, providing a theoretical basis for COVID-19 treatment in a certain extent.


Assuntos
COVID-19 , Microbiota , Humanos , SARS-CoV-2 , Tratamento Farmacológico da COVID-19 , RNA-Seq , Análise da Expressão Gênica de Célula Única , Microbiota/genética
8.
J Environ Manage ; 344: 118545, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37418928

RESUMO

Emerging photoelectrocatalytic (PEC) systems integrate the advantages of photocatalysis and electrocatalysis and are considered as a promising technology for solving the global organic pollution problem in water environments. Among the photoelectrocatalytic materials applied for organic pollutant degradation, graphitic carbon nitride (CN) has the combined advantages of environmental compatibility, stability, low cost, and visible light response. However, pristine CN has disadvantages such as low specific surface area, low electrical conductivity, and high charge complexation rate, and how to improve the degradation efficiency of PEC reaction and the mineralization rate of organic matter is the main problem faced in this field. Therefore, this paper reviews the progress of various functionalized CN used for PEC reaction in recent years, and the degradation efficiency of these CN-based materials is critically evaluated. First, the basic principles of PEC degradation of organic pollutants are outlined. Then, engineering strategies to enhance the PEC activity of CN (including morphology control, elemental doping, and heterojunction construction) are focused on, and the structure-activity relationships between these engineering strategies and PEC activity are discussed. In addition, the important role of influencing factors on the PEC system is summarized in terms of mechanism, to provide guidance for the subsequent research. Finally, suggestions and perspectives are provided for the preparation of efficient and stable CN-based photoelectrocatalysts for practical wastewater treatment applications.


Assuntos
Poluentes Ambientais , Água
9.
Environ Sci Pollut Res Int ; 30(32): 78959-78972, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37278892

RESUMO

Contaminated sites pose a serious threat to the ecological environment and human health. Because of the presence of multiple peaks in the pollution data of some contaminated sites, as well as strong spatial heterogeneity and skewness in their distribution, the accuracy of spatial interpolation prediction is low. This study proposes a method for investigating highly skewed contaminated sites, which uses Thiessen polygons coupled with geostatistics and deterministic interpolation to optimize the spatial prediction and sampling strategy of sites. An industrial site in Luohe is used as an example to validate the proposed method. The results indicate that using 40 × 40 m as the minimum initial sampling unit can obtain data that is representative of the regional pollution situation. Evaluation indexes reveal that the ordinary kriging (OK) method for interpolation prediction accuracy and the radial basis function_inverse distance weighted (RBF_IMQ) method for pollution scope prediction provides the best results, which can effectively improve the spatial prediction accuracy of pollution in the study area. Each accuracy indicator is enhanced by 20-70% after supplementing 11 sampling points in the suspect region, and the identification of the pollution scope approaches 95%. This method offers a novel approach for investigating highly biased contaminated sites, which can optimize the spatial prediction accuracy of pollution and reduce economic costs.


Assuntos
Poluentes do Solo , Humanos , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Poluição Ambiental , Meio Ambiente , Solo , Análise Espacial
10.
Plant Physiol ; 192(4): 2723-2736, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37099480

RESUMO

Glandular trichomes (GTs) are outgrowths of plant epidermal cells that secrete and store specialized secondary metabolites that protect plants against biotic and abiotic stresses and have economic importance for human use. While extensive work has been done to understand the molecular mechanisms of trichome organogenesis in Arabidopsis (Arabidopsis thaliana), which forms unicellular, nonglandular trichomes (NGTs), little is known about the mechanisms of GT development or regulation of secondary metabolites in plants with multicellular GTs. Here, we identified and functionally characterized genes associated with GT organogenesis and secondary metabolism in GTs of cucumber (Cucumis sativus). We developed a method for effective separation and isolation of cucumber GTs and NGTs. Transcriptomic and metabolomic analyses showed that flavonoid accumulation in cucumber GTs is positively associated with increased expression of related biosynthesis genes. We identified 67 GT development-related genes, the functions of 7 of which were validated by virus-induced gene silencing. We further validated the role of cucumber ECERIFERUM1 (CsCER1) in GT organogenesis by overexpression and RNA interference transgenic approaches. We further show that the transcription factor TINY BRANCHED HAIR (CsTBH) serves as a central regulator of flavonoid biosynthesis in cucumber GTs. Work from this study provides insight into the development of secondary metabolite biosynthesis in multicellular GTs.


Assuntos
Arabidopsis , Cucumis sativus , Humanos , Cucumis sativus/metabolismo , Tricomas/metabolismo , Perfilação da Expressão Gênica , Plantas/genética , Arabidopsis/genética , Flavonoides/genética , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047408

RESUMO

Glandular trichomes (GTs), specialized structures formed by the differentiation of plant epidermal cells, are known to play important roles in the resistance of plants to external biotic and abiotic stresses. These structures are capable of storing and secreting secondary metabolites, which often have important agricultural and medicinal values. In order to better understand the molecular developmental mechanisms of GTs, studies have been conducted in a variety of crops, including tomato (Solanum lycopersicum), sweetworm (Artemisia annua), and cotton (Gossypium hirsutum). The MYC transcription factor of the basic helix-loop-helix (bHLH) transcription factor family has been found to play an important role in GT development. In this study, a total of 13 cucumber MYC transcription factors were identified in the cucumber (Cucumis sativus L.) genome. After performing phylogenetic analyses and conserved motifs on the 13 CsMYCs in comparison to previously reported MYC transcription factors that regulate trichome development, seven candidate MYC transcription factors were selected. Through virus-induced gene silencing (VIGS), CsMYC2 is found to negatively regulate GT formation while CsMYC4, CsMYC5, CsMYC6, CsMYC7, and CsMYC8 are found to positively regulate GT formation. Furthermore, the two master effector genes, CsMYC2 and CsMYC7, are observed to have similar expression patterns indicating that they co-regulate the balance of GT development in an antagonistic way.


Assuntos
Cucumis sativus , Tricomas , Tricomas/genética , Tricomas/metabolismo , Cucumis sativus/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Gossypium/genética , Regulação da Expressão Gênica de Plantas
12.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674649

RESUMO

Fruit glossiness is an important external fruit quality trait that greatly affects the marketability of fresh cucumber (Cucumis sativus) fruits. A few reports have suggested that the extent of cuticular wax loading influences the glossiness of the fruit surface. In the present study, we tested the wax contents of two inbred cucumber lines, comparing a line with waxy fruit (3401) and a line with glossy fruit (3413). Wax content analysis and dewaxing analysis demonstrate that fruit cuticular wax loads negatively correlate with fruit glossiness in cucumber. Identifying genes that were differentially expressed in fruit pericarps between 3401 and 3413 and genes induced by abscisic acid suggested that the wax biosynthesis gene CsCER6 (Cucumis sativus ECERIFERUM 6) and the regulatory gene CsCER7 may affect wax accumulation on cucumber fruit. Expression analysis via RT-qPCR, GUS-staining, and in situ hybridization revealed that CsCER6 and CsCER7 are abundantly expressed in the epidermis cells in cucumber fruits. Furthermore, the overexpression and RNAi lines of CsCER6 and CsCER7 showed dramatic effects on fruit cuticular wax contents, fruit glossiness, and cuticle permeability. Our results suggest that CsCER6 and CsCER7 positively regulate fruit cuticular wax accumulation and negatively influence fruit glossiness.


Assuntos
Cucumis sativus , Cucumis sativus/genética , Cucumis sativus/metabolismo , Frutas/genética , Frutas/metabolismo , Ácido Abscísico/metabolismo , Fenótipo , Interferência de RNA , Ceras/metabolismo , Regulação da Expressão Gênica de Plantas
13.
New Phytol ; 236(4): 1471-1486, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36068958

RESUMO

Fusarium wilt disease, caused by Fusarium oxysporum f. sp. cucumerinum (Foc), leads to widespread yield loss and quality decline in cucumber. However, the molecular mechanisms underlying Foc resistance remain poorly understood. We report the mapping and functional characterisation of CsChi23, encoding a cucumber class I chitinase with antifungal properties. We assessed sequence variations at CsChi23 and the associated defence response against Foc. We functionally characterised CsChi23 using transgenic assay and expression analysis. The mechanism regulating CsChi23 expression was assessed by genetic and molecular approaches. CsChi23 was induced by Foc infection, which led to rapid upregulation in resistant cucumber lines. Overexpressing CsChi23 enhanced fusarium wilt resistance and reduced fungal biomass accumulation, whereas silencing CsChi23 causes loss of resistance. CsHB15, a homeodomain leucine zipper (HD-Zip) III transcription factor, was found to bind to the CsChi23 promoter region and activate its expression. Furthermore, silencing of CsHB15 reduces CsChi23 expression. A single-nucleotide polymorphism variation -400 bp upstream of CsChi23 abolished the HD-Zip III binding site in a susceptible cucumber line. Collectively, our study indicates that CsChi23 is sufficient to enhance fusarium wilt resistance and reveals a novel function of an HD-Zip III transcription factor in regulating chitinase expression in cucumber defence against fusarium wilt.


Assuntos
Quitinases , Cucumis sativus , Fusarium , Antifúngicos , Quitinases/genética , Cucumis sativus/microbiologia , Fusarium/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética
14.
Hortic Res ; 9: uhac146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072836

RESUMO

Fruit glossiness is an important external fruit quality trait for fresh-consumed cucumber fruit, affecting its marketability. Dull fruit appearance is mainly controlled by a single gene, D (for dull fruit) that is dominant to glossy fruit (dd), but the molecular mechanism controlling fruit glossiness is unknown. In the present study, we conducted map-based cloning of the D locus in cucumber and identified a candidate gene (Csa5G577350) that encodes a C2H2-type zinc finger transcription factor, CsDULL. A 4895-bp deletion including the complete loss of CsDULL resulted in glossy fruit. CsDULL is highly expressed in the peel of cucumber fruit, and its expression level is positively correlated with the accumulation of cutin and wax in the peel. Through transcriptome analysis, yeast one-hybrid and dual-luciferase assays, we identified two genes potentially targeted by CsDULL for regulation of cutin and wax biosynthesis/transportation that included CsGPAT4 and CsLTPG1. The possibility that CsDULL controls both fruit glossiness and wart development in cucumber is discussed. The present work advances our understanding of regulatory mechanisms of fruit epidermal traits, and provides a useful tool for molecular breeding to improve external fruit quality in cucumber.

15.
Front Genet ; 13: 1007513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160001

RESUMO

Lignin contributes to plant resistance to biotic and abiotic stresses and is dominantly regulated by enzymes which catalyze the generation of metabolites intermediates in lignin synthesis. However, the response of lignin and its key regulatory factors to high temperature stress are poorly understood. Here, this finding revealed that the content of lignin in poplar (Populus spp) stem increased after 3 days of high temperature stress treatment. In fourteen metabolic intermediates of lignin biosynthetic pathway with targeted metabolomics analysis, caffeate and coniferaldehyde increased evidently upon heat stress. C3'H (p-Coumaroylshikimate 3-hydroxylase) and CCR (Cinnamoyl-CoA reductase) are recognized to catalyze the formation of caffeate and coniferaldehyde, respectively. Transcriptome data and RT-qPCR (reverse transcription-quantitative real-time polymerase chain reaction) analysis uncovered the high transcriptional level of PtrMYBs (PtrMYB021, PtrMYB074, PtrMYB85, PtrMYB46), PtrC3'H1 (Potri.006G033300) and PtrCCR2 (Potri.003G181400), suggesting that they played the vital role in the increase of lignin and its metabolic intermediates were induced by high temperature. The discovery of key regulators and metabolic intermediates in lignin pathway that respond to high temperature provides a theoretical basis for quality improvement of lignin and the application of forest resources.

16.
Environ Sci Pollut Res Int ; 29(59): 88938-88950, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35840836

RESUMO

Plant growth-promoting bacteria and biochar have been widely used as immobilizers to remediate heavy metal contaminated soil. However, few studies have unraveled the effect and synergistic mechanism of combined application of plant growth-promoting bacteria and biochar on in situ heavy metal contaminated soil remediation and plant yield and quality improvement under heavy metal pollution stress. In this study, the effects of biochar, γ-PGA-producing bacteria (Bacillus amyloliquefaciens strain W25) and their combined application on Cd and Pb immobilization, γ-PGA production in soil filtrate, the bacterial community in rhizosphere soil, physicochemical properties of soil, heavy metal uptake, and quality and yield of tomato in heavy metal-contaminated soil were investigated. The application of W25, biochar, and their combinations significantly reduced Cd content in mature tomato fruits by 22-60%, increased the single fruit weight and lycopene content by 7-21% and 23-48%, respectively, and the combination of biochar and W25 had the best effect. All the treatments significantly reduced DTPA-Cd and DTPA-Pb contents in rhizosphere soil (42-53% and 6.5-35%), increased the pH value and the activities of urease-alkaline phosphatase of soil, but did not affect the expression of heavy metal transporter gene LeNRAMP1 in tomato roots. Biochar + W25 increased the relative abundance of plant growth-promoting bacteria such as Bacillus and Streptomyces. Biochar-enhanced plant growth-promoting bacteria to settle and colonize in soil significantly improved the ability of strain W25 to produce γ-PGA, and immobilized Cd in soil filtrate. The combination of biochar and plant growth-promoting bacteria ensures safe crop production in heavy metal-contaminated soil.


Assuntos
Metais Pesados , Poluentes do Solo , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Poluentes do Solo/análise , Cádmio/análise , Chumbo , Metais Pesados/análise , Carvão Vegetal/química , Solo/química , Bactérias/metabolismo , Ácido Pentético
17.
Materials (Basel) ; 15(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35407944

RESUMO

Magnesium alloys exhibit superior biocompatibility and biodegradability, which makes them an excellent candidate for artificial implants. However, these materials also suffer from lower corrosion resistance, which limits their clinical applicability. The corrosion mechanism of Mg alloys is complicated since the spontaneous occurrence is determined by means of loss of aspects, e.g., the basic feature of materials and various corrosive environments. As such, this study provides a review of the general degradation/precipitation process multifactorial corrosion behavior and proposes a reasonable method for modeling and preventing corrosion in metals. In addition, the composition design, the structural treatment, and the surface processing technique are involved as potential methods to control the degradation rate and improve the biological properties of Mg alloys. This systematic representation of corrosive mechanisms and the comprehensive discussion of various technologies for applications could lead to improved designs for Mg-based biomedical devices in the future.

18.
Genes (Basel) ; 13(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35328021

RESUMO

YABBY transcription factors play important roles in plant growth and development. However, little is known about YABBY genes in Cucurbitaceae. Here, we identified 59 YABBY genes from eight cucurbit species, including cucumber (C. sativus L.), melon (C. melon L.), watermelon (C. lanatus), wax gourd (B. hispida), pumpkin (C. maxima), zucchini (C. pepo L.), silver-seed gourd (C. argyrosperma), and bottle gourd (L. siceraria). The 59 YABBY genes were clustered into five subfamilies wherein the gene structures and motifs are conserved, suggesting similar functions within each subfamily. Different YABBY gene numbers in eight cucurbit species indicated that gene loss or duplication events exist in an evolutionary process across Cucurbitaceae. The cis-acting elements analysis implied that the YABBYs may be involved in plant development, and phytohormone, stress, and light responses. Importantly, YABBY genes exhibited organ-specific patterns in expression in cucumber. Furthermore, a gene CsaV3_6G038650 was constitutively expressed at higher levels at different fruit development stages and might play a crucial role in cucumber fruit development. Collectively, our work will provide a better understanding for further function identifications of YABBY genes in Cucurbitaceae.


Assuntos
Citrullus , Cucumis sativus , Cucurbitaceae , Citrullus/genética , Cucumis sativus/genética , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Genoma de Planta , Reguladores de Crescimento de Plantas/metabolismo
19.
Am J Sports Med ; 50(3): 801-813, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35289229

RESUMO

BACKGROUND: As many researchers have focused on promoting the graft-bone healing of artificial ligaments, even with numerous chemical coatings, identifying a biosafe, effective, and immediately usable method is still important clinically. PURPOSE: (1) To determine whether a low-intensity pulsed ultrasound system (LIPUS) promotes in vitro cell viability and osteogenic differentiation and (2) to assess the applicability and effectiveness of LIPUS in promoting the graft-bone healing of artificial ligaments in vivo. STUDY DESIGN: Controlled laboratory study. METHODS: Polyethylene terephthalate (PET) sheets and grafts were randomly assigned to control and LIPUS groups. MC3T3-E1 preosteoblasts were cultured on PET sheets. Cell viability and morphology were evaluated using a live/dead viability assay and scanning electron microscopy. Alkaline phosphatase activity, calcium nodule formation, and Western blot were evaluated for osteogenic differentiation. For in vivo experiments, the effect of LIPUS was evaluated via an extra-articular graft-bone healing model in 48 rabbits: the osteointegration and new bone formation were tested by micro-computed tomography and histological staining, and the graft-bone bonding was tested by biomechanical testing. RESULTS: Cell viability was significantly higher in the LIPUS group as compared with control (living and dead compared between control and LIPUS groups, P = .0489 vs P = .0489). Better adherence of cells and greater development of extracellular matrix were observed in the LIPUS group. Furthermore, LIPUS promoted alkaline phosphatase activity, calcium nodule formation, and the protein expression of collagen 1 (P = .0002) and osteocalcin (P = .0006) in vitro. Micro-computed tomography revealed higher surrounding bone mass at 4 weeks and newly formed bone mass at 8 weeks in the LIPUS group (P = .0014 and P = .0018). Histological analysis showed a narrower interface and direct graft-bone contact in the LIPUS group; the surrounding bone area at 4 weeks and the mass of newly formed bone at 4 and 8 weeks in the LIPUS group were also significantly higher as compared with control (surrounding bone, P < .0001; newly formed bone, P = .0016 at 4 weeks and P = .005 at 8 weeks). The ultimate failure load in the LIPUS group was significantly higher than in the control group (P < .0001 at 4 weeks; P = .0008 at 8 weeks). CONCLUSION: LIPUS promoted the viability and osteogenic differentiation of MC3T3-E1 preosteoblasts in vitro and enhanced the graft-bone healing of PET artificial ligament in vivo. CLINICAL RELEVANCE: LIPUS is an effective physical stimulation to enhance graft-bone healing after artificial ligament implantation.


Assuntos
Osteogênese , Cicatrização , Animais , Humanos , Ligamentos , Coelhos , Ondas Ultrassônicas , Cicatrização/fisiologia , Microtomografia por Raio-X
20.
Animals (Basel) ; 12(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35327094

RESUMO

N6-methyladenosine (m6A) is the most abundant modification in linear RNA molecules. Over the last few years, interestingly, many circRNA molecules are also found to have extensive m6A modification sites with temporal and spatial specific expression patterns. To date, however, little information is available concerning the expression profiling and functional regulatory characteristics of m6A modified circRNAs (m6A-circRNAs) in secondary hair follicles (SHFs) of cashmere goats. In this study, a total of fifteen m6A-circRNAs were identified and characterized in the skin tissue of cashmere goats. Of these, six m6A-circRNAs were revealed to have significantly higher expression in skin at anagen compared with those at telogen. The constructed ceRNA network indicated a complicated regulatory relationship of the six anagen up-regulated m6A-circRNAs through miRNA mediated pathways. Several signaling pathways implicated in the physiological processes of hair follicles were enriched based on the potential regulatory genes of the six anagen up-regulated m6A-circRNAs, such as TGF-beta, axon guidance, ribosome, and stem cell pluripotency regulatory pathways, suggesting the analyzed m6A-circRNAs might be essentially involved in SHF development and cashmere growth in cashmere goats. Further, we showed that four m6A-circRNAs had highly similar expression trends to their host genes in SHFs of cashmere goats including m6A-circRNA-ZNF638, -TULP4, -DNAJB6, and -CAT. However, the expression patterns of two m6A-circRNAs (m6A-circRNA-STAM2 and -CAAP1) were inconsistent with the linear RNAs from their host genes in the SHFs of cashmere goats. These results provide novel information for eluci-dating the biological function and regulatory characteristics of the m6A-circRNAs in SHF development and cashmere growth in goats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...