Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29453, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628729

RESUMO

Objective: Structural support for depressed tibial plateau fractures is receiving increasing attention. Currently, there has been little biomechanical evaluation of structural support. This work aimed to investigate the effect of structural support size and position on fracture fixation stability. Methods: A split-depressed tibial plateau fracture model was created according to the fracture map. Cortical screws combined with structural filler were used for fracture fixation. The filler diameter was set to small, medium and large, and the filler position was set to the center and offset by 1, 2 and 3 mm to study the effect of position and size on stability. Results: The maximum stress on the implant in all scenarios occurs at the lower contact surface between the anterior screw and the filler. Increased support size resulted in increased mean maximum screw stress, depressed fragment axial displacement and separated fragment transverse displacement (screw stress: 266.6 ± 37.7 MPa vs. 266.7 ± 51.0 MPa vs. 273.8 ± 41.5 MPa; depressed displacement: 0.123 ± 0.036 mm vs. 0.133 ± 0.049 mm vs. 0.158 ± 0.050 mm; separated displacement: 0.402 ± 0.031 mm VS 0.412 ± 0.047 mm VS 0.437 ± 0.049 mm). The larger the offset of the support position was, the larger the peak screw stress and the larger the reduction loss of depressed and separated fragment reduction, regardless of the support size. The medium support combined with the central position presented the minimum of peak stress and reduction loss. Cortical bone was below 2 % and trabecular strain was below 10 % for all scenarios. Conclusion: Central placement of structural support provides superior stability for the treatment of depressed tibial plateau fractures compared to the eccentric placement. When a support is placed centrally, optimal stability is achieved when the diameter matches the diameter of the depressed region. Thus, the utilization of equal-diameter fillers to provide central support appears to be an ideal selection for depressed tibial plateau fractures.

2.
World J Gastrointest Oncol ; 15(2): 332-342, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36908321

RESUMO

BACKGROUND: The overexpression of the MYC gene plays an important role in the occurrence, development and evolution of colorectal cancer (CRC). Bromodomain and extraterminal domain (BET) inhibitors can decrease the function BET by recognizing acetylated lysine residues, thereby downregulating the expression of MYC. AIM: To investigate the inhibitory effect and mechanism of a BET inhibitor on CRC cells. METHODS: The effect of the BET inhibitor JAB-8263 on the proliferation of various CRC cell lines was studied by CellTiter-Glo method and colony formation assay. The effect of JAB-8263 on the cell cycle and apoptosis of CRC cells was studied by propidium iodide staining and Annexin V/propidium iodide flow assay, respectively. The effect of JAB-8263 on the expression of c-MYC, p21 and p16 in CRC cells was detected by western blotting assay. The anti-tumor effect of JAB-8263 on CRC cells in vivo and evaluation of the safety of the compound was predicted by constructing a CRC cell animal tumor model. RESULTS: JAB-8263 dose-dependently suppressed CRC cell proliferation and colony formation in vitro. The MYC signaling pathway was dose-dependently inhibited by JAB-8263 in human CRC cell lines. JAB-8263 dose-dependently induced cell cycle arrest and apoptosis in the MC38 cell line. SW837 xenograft model was treated with JAB-8263 (0.3 mg/kg for 29 d), and the average tumor volume was significantly decreased compared to the vehicle control group (P < 0.001). The MC38 syngeneic murine model was treated with JAB-8263 (0.2 mg/kg for 29 d), and the average tumor volume was significantly decreased compared to the vehicle control group (P = 0.003). CONCLUSION: BET could be a potential effective drug target for suppressing CRC growth, and the BET inhibitor JAB-8263 can effectively suppress c-MYC expression and exert anti-tumor activity in CRC models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...