Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 714
Filtrar
1.
J Environ Sci (China) ; 149: 406-418, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181653

RESUMO

Improving the accuracy of anthropogenic volatile organic compounds (VOCs) emission inventory is crucial for reducing atmospheric pollution and formulating control policy of air pollution. In this study, an anthropogenic speciated VOCs emission inventory was established for Central China represented by Henan Province at a 3 km × 3 km spatial resolution based on the emission factor method. The 2019 VOCs emission in Henan Province was 1003.5 Gg, while industrial process source (33.7%) was the highest emission source, Zhengzhou (17.9%) was the city with highest emission and April and August were the months with the more emissions. High VOCs emission regions were concentrated in downtown areas and industrial parks. Alkanes and aromatic hydrocarbons were the main VOCs contribution groups. The species composition, source contribution and spatial distribution were verified and evaluated through tracer ratio method (TR), Positive Matrix Factorization Model (PMF) and remote sensing inversion (RSI). Results show that both the emission results by emission inventory (EI) (15.7 Gg) and by TR method (13.6 Gg) and source contribution by EI and PMF are familiar. The spatial distribution of HCHO primary emission based on RSI is basically consistent with that of HCHO emission based on EI with a R-value of 0.73. The verification results show that the VOCs emission inventory and speciated emission inventory established in this study are relatively reliable.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , China , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poluição do Ar/estatística & dados numéricos , Poluição do Ar/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-39288043

RESUMO

Real-time continuous locomotion mode recognition and seamless timely transition detection is critical for the exoskeleton robot. This study aims to present a comprehensive and innovative framework for locomotion mode recognition and transition prediction, exclusively utilizing inertial measurement unit (IMU) signals from the exoskeleton. In this framework, a CNN-BiLSTM model was developed and trained to be the classifier and a novel majority filter was designed to reduce the transition misjudgment rate. Moreover, a comprehensive evaluation system encompassing eight dimensions for the classifier, incorporating evaluation metrics specifically for transition misjudgment, was proposed. We collected locomotion motion data from six subjects wearing a rigid exoskeleton robot using six IMU sensors on the exoskeleton. The proposed method achieves a high level of recognition accuracy, with an overall average of 99.58% for the five steady locomotion modes (level ground walking (LG), stair ascent/descent (SA/SD), and ramp ascent/descent (RA/RD)) across six subjects following the transition decision. All transitions are recognizable, and the majority can be predicted in advance, with an average prediction time of 353ms. Furthermore, the implementation of majority filter resulted in an average 87.04% reduction in the transition misjudgment rate among six subjects, thereby decreasing the average transition misjudgment rate to 4.82%. Finally, the model was tested on a Jetson Nano to verify its real-time performance. The results presented above were obtained under the condition where either leg could function as the first transition leg and revealed that the developed system was capable of achieving precise locomotion mode recognition and timely transition prediction, with high real-time performance.

3.
World J Diabetes ; 15(9): 1862-1873, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39280188

RESUMO

The increasing prevalence of diabetes has led to a growing population of end-stage kidney disease (ESKD) patients with diabetes. Currently, kidney transplantation is the best treatment option for ESKD patients; however, it is limited by the lack of donors. Therefore, dialysis has become the standard treatment for ESKD patients. However, the optimal dialysis method for diabetic ESKD patients remains controversial. ESKD patients with diabetes often present with complex conditions and numerous complications. Furthermore, these patients face a high risk of infection and technical failure, are more susceptible to malnutrition, have difficulty establishing vascular access, and experience more frequent blood sugar fluctuations than the general population. Therefore, this article reviews nine critical aspects: Survival rate, glucose metabolism disorder, infectious complications, cardiovascular events, residual renal function, quality of life, economic benefits, malnutrition, and volume load. This study aims to assist clinicians in selecting individualized treatment methods by comparing the advantages and disadvantages of hemodialysis and peritoneal dialysis, thereby improving patients' quality of life and survival rates.

4.
J Colloid Interface Sci ; 678(Pt A): 742-756, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39217690

RESUMO

Aluminum and its alloys have been widely used in our lives. However, Aluminum and its alloys is prone to corrosion, especially in harsh environment. In recent years, hydrophobic coatings were used in the corrosion protection of metal. But, the low surface tension of resins made them have a worse wettability on metal which had high surface tension, resulting in a worse adhesion of these coatings. Herein, we developed a long-lasting anti-corrosion direct-to-metal polyurethane NP-Glide coating based on the coordination effect of polyphenol and dual cross-linking. In comparative evaluation, the corrosion protection and anti-contamination performances of direct-to-metal polyurethane NP-Glide coating are significantly improved by the introduction of functional monomer dopamine methacrylamide (DMA) and TEMAc-8. The PU coatings with 10 wt% TEMAc-8 possesses high impedance value (|Z|0.01Hz > 109 Ω•cm2) after 40 days of immersion in 3.5 wt% NaCl solution, exhibiting a great pull-off adhesion both in dry and wet coating, and a long-term anti-corrosion performance for aluminum alloy protection.

5.
Heliyon ; 10(15): e35628, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170168

RESUMO

Background: The association between maternal fruit consumption and fetal growth remains inconsistent. The current study aimed to determine whether maternal fruit consumption was associated with low birth weight (LBW) or small for gestational age (SGA) babies. Methods: A large birth cohort study was conducted in Lanzhou, China, from 2010 to 2012 and included 10,076 pregnant women at the 1st, 2nd, and 3rd trimester of pregnancy for analysis. Fruit consumption in the 1st, 2nd, and 3rd trimester of pregnancy was measured by a self-designed food frequency questionnaire (FFQ) and divided into three groups: 1) inadequate fruit consumption: <200 g/d for the1st, 2nd, and 3rd trimester; 2) adequate fruit consumption: 200-350 g/d for the 1st trimester or 200-400 g/d for the 2nd and 3rd trimester; 3) excessive fruit consumption: >350 g/d for the 1st trimester or > 400 g/d for the 2nd and 3rd trimester. A case-control study was used to analyze the association between fruit intake during pregnancy and low birth weight infants. Results: Compared to adequate fruit consumption, excessive fruit consumption throughout each trimester of pregnancy was associated with a lower risk of LBW, with an odds ratio (OR) ranging from 0.70 to 0.79 (95 % confidence interval, CI: 0.57-0.98); while inadequate fruit consumption was associated with a higher risk of infant LBW, with an OR ranging from 1.26 to 1.36 (95%CI: 1.04-1.66). After stratifying by mother's pre-pregnancy body mass index (BMI), the results were similar among women with underweight BMI. No significance was found between fruit consumption and SGA in the general population. Still, stratified analyses showed that inadequate fruit consumption was associated with an increased risk of SGA in underweight mothers, with an OR ranging from 1.66 to 1.79 (95%CI: 1.13-2.64). Conclusions: Fruit consumption during pregnancy reduces the risk of LBW in Chinese women, especially in women with low pre-pregnancy BMI.

7.
Artigo em Inglês | MEDLINE | ID: mdl-39181427

RESUMO

BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) risk prediction models established in patients with chronic hepatitis B (CHB) receiving nucleoside analogue (NA) rarely included viral factors because of mediocre predictability of traditional viral markers. Here, we investigate the role of serum hepatitis B virus (HBV) RNA, a novel biomarker, in predicting HCC risk in NA-treated patients. METHODS: A total of 1374 NA-treated patients were enrolled from two prospective CHB cohorts. Serum HBV RNA was detected at baseline, year 1, 2 and 3 of treatment. Cox proportional-hazard model was used to investigate the association of HBV RNA kinetics with HCC risk. RESULTS: After a median follow-up of 5.4 years, 76 patients developed HCC. HBV RNA declines at year 1 (adjusted hazard ratio (aHR) = 0.70, P = .009) and 2 (aHR = 0.71, P = .016) were independently associated with HCC risk. Patients with less HBV RNA decline at year 1 (=< 0.4 log10 copies/mL) or 2 (=<0.6 log10 copies/mL) had 2.22- and 2.09-folds higher HCC risk, respectively, than those with more declines. When incorporating these early on-treatment HBV RNA declines into existing HCC risk scores, including PAGE B, mPAGE B and aMAP score, they could enhance their predictive performance [i.e. C-index, 0.814 vs. 0.788 (Model (PAGE B + year-1 HBV RNA decline)vs. PAGE B score based on baseline parameters)]. CONCLUSIONS: Serum HBV RNA declines at year 1 and 2 were significantly associated with on-treatment HCC risk. Incorporating early on-treatment HBV RNA declines into HCC risk prediction models can be useful tools to guide appropriate surveillance strategies in NA-treated patients.

11.
Plants (Basel) ; 13(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39204773

RESUMO

Sugarcane/soybean intercropping and reduced nitrogen (N) application as an important sustainable agricultural pattern can increase crop primary productivity and improve soil ecological functions, thereby affecting soil organic carbon (SOC) input and turnover. To explore the potential mechanism of sugarcane/soybean intercropping affecting SOC sequestration, a two-factor long-term field experiment was carried out, which included planting pattern (sugarcane monocropping (MS), sugarcane/soybean 1:1 intercropping (SB1), and sugarcane/soybean 1:2 intercropping (SB2)) and nitrogen addition levels (reduced N application (N1: 300 kg·hm-2) and conventional N application (N2: 525 kg·hm-2)). The results showed that the shoot and root C fixation in the sugarcane/soybean intercropping system were significantly higher than those in the sugarcane monocropping system during the whole growth period of sugarcane, and the N application level had no significant effect on the C fixation of plants in the intercropping system. Sugarcane/soybean intercropping also increased the contents of total organic C (TOC), labile organic C fraction [microbial biomass C (MBC) and dissolved organic C (DOC)] in the soil during the growth period of sugarcane, and this effect was more obvious at the N1 level. We further analyzed the relationship between plant C sequestration and SOC fraction content using regression equations and found that both plant shoot and root C sequestration were significantly correlated with TOC, MBC, and DOC content. This suggests that sugarcane/soybean intercropping increases the amount of C input to the soil by improving crop shoot and root C sequestration, which then promotes the content of each SOC fraction. The results of this study indicate that sugarcane/soybean intercropping and reduced N application patterns can synergistically improve plant and soil C fixation, which is of great significance for improving crop yields, increasing soil fertility, and reducing greenhouse gas emissions from agricultural fields.

12.
Cochrane Database Syst Rev ; 8: CD015924, 2024 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136257

RESUMO

OBJECTIVES: This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess the efficacy and harm of deep brain stimulation for motor symptoms, with psychiatric and behavioural comorbidities, either individually or in combination, in adults and adolescents with Tourette's syndrome compared to placebo, sham intervention, or the best available behavioural and pharmacological treatment.


Assuntos
Estimulação Encefálica Profunda , Ensaios Clínicos Controlados Aleatórios como Assunto , Síndrome de Tourette , Síndrome de Tourette/terapia , Estimulação Encefálica Profunda/métodos , Humanos , Adulto , Adolescente
13.
PeerJ ; 12: e17333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948204

RESUMO

Acute heart attack is the primary cause of cardiovascular-related death worldwide. A common treatment is reperfusion of ischemic tissue, which can cause irreversible damage to the myocardium. The number of mitochondria in cardiomyocytes is large, which generate adenosine triphosphate (ATP) to sustain proper cardiac contractile function, and mitochondrial dysfunction plays a crucial role in cell death during myocardial ischemia-reperfusion, leading to an increasing number of studies investigating the impact of mitochondria on ischemia-reperfusion injury. The disarray of mitochondrial dynamics, excessive Ca2+ accumulation, activation of mitochondrial permeable transition pores, swelling of mitochondria, ultimately the death of cardiomyocyte are the consequences of ischemia-reperfusion injury. κ-opioid receptors can alleviate mitochondrial dysfunction, regulate mitochondrial dynamics, mitigate myocardial ischemia-reperfusion injury, exert protective effects on myocardium. The mechanism of κ-OR activation during myocardial ischemia-reperfusion to regulate mitochondrial dynamics and reduce myocardial ischemia-reperfusion injury will be discussed, so as to provide theoretical basis for the protection of ischemic myocardium.


Assuntos
Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Receptores Opioides kappa , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Receptores Opioides kappa/metabolismo , Humanos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Dinâmica Mitocondrial/fisiologia , Cálcio/metabolismo
16.
Nat Commun ; 15(1): 5936, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009560

RESUMO

Jellyfish exhibit innovative swimming patterns that contribute to exploring the origins of animal locomotion. However, the genetic and cellular basis of these patterns remains unclear. Herein, we generated chromosome-level genome assemblies of two jellyfish species, Turritopsis rubra and Aurelia coerulea, which exhibit straight and free-swimming patterns, respectively. We observe positive selection of numerous genes involved in statolith formation, hair cell ciliogenesis, ciliary motility, and motor neuron function. The lineage-specific absence of otolith morphogenesis- and ciliary movement-related genes in T. rubra may be associated with homeostatic structural statocyst loss and straight swimming pattern. Notably, single-cell transcriptomic analyses covering key developmental stages reveal the enrichment of diapause-related genes in the cyst during reverse development, suggesting that the sustained diapause state favours the development of new polyps under favourable conditions. This study highlights the complex relationship between genetics, locomotion patterns and survival strategies in jellyfish, thereby providing valuable insights into the evolutionary lineages of movement and adaptation in the animal kingdom.


Assuntos
Cifozoários , Análise de Célula Única , Natação , Animais , Cifozoários/genética , Cifozoários/fisiologia , Diapausa/genética , Genômica/métodos , Genoma/genética , Transcriptoma , Perfilação da Expressão Gênica
17.
Appl Microbiol Biotechnol ; 108(1): 418, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012538

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) biofilm formation is a crucial cause of enhanced antibiotic resistance. Quorum sensing (QS) is involved in regulating biofilm formation; QS inhibitors block the QS signaling pathway as a new strategy to address bacterial resistance. This study investigated the potential and mechanism of L-HSL (N-(3-cyclic butyrolactone)-4-trifluorophenylacetamide) as a QS inhibitor for P. aeruginosa. The results showed that L-HSL effectively inhibited the biofilm formation and dispersed the pre-formed biofilm of P. aeruginosa. The production of extracellular polysaccharides and the motility ability of P. aeruginosa were suppressed by L-HSL. C. elegans infection experiment showed that L-HSL was non-toxic and provided protection to C. elegans against P. aeruginosa infection. Transcriptomic analysis revealed that L-HSL downregulated genes related to QS pathways and biofilm formation. L-HSL exhibits a promising potential as a therapeutic drug for P. aeruginosa infection. KEY POINTS: • Chemical synthesis of N-(3-cyclic butyrolactone)-4-trifluorophenylacetamide, named L-HSL. • L-HSL does not generate survival pressure on the growth of P. aeruginosa and can inhibit the QS system. • KEGG enrichment analysis found that after L-HSL treatment, QS-related genes were downregulated.


Assuntos
4-Butirolactona , Biofilmes , Caenorhabditis elegans , Pseudomonas aeruginosa , Percepção de Quorum , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Percepção de Quorum/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/microbiologia , Animais , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , 4-Butirolactona/metabolismo , Antibacterianos/farmacologia , Perfilação da Expressão Gênica , Homosserina/análogos & derivados , Homosserina/metabolismo , Homosserina/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos
18.
Front Endocrinol (Lausanne) ; 15: 1410295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39076512

RESUMO

Background: The gut microbiota plays a pivotal role in the development of diabetes and kidney disease. However, it is not clear how the intestinal microecological imbalance is involved in the context of diabetic kidney disease (DKD), the leading cause of renal failure. Objectives: To elucidate the gut microbial signatures associated with DKD progression towards end-stage renal disease (ESRD) and explore whether they could reflect renal dysfunction and psychological distress. Methods: A cross-sectional study was conducted to explore the gut microbial signatures of 29 DKD non-ESRD patients and 19 DKD ESRD patients compared to 20 healthy controls. Differential analysis was performed to detect distinct gut microbial alterations in diversities and taxon abundance of DKD with and without ESRD. Renal dysfunction was estimated by urea, creatinine, and estimated glomerular filtration rate. Psychological distress was assessed using the Self-Rating Anxiety Scale, Self-Rating Depression Scale, Hamilton Anxiety Rating Scale, and Hamilton Depression Rating Scale. Results: Alpha diversity indexes were reduced in DKD patients, particularly those with ESRD. Beta diversity analysis revealed that the gut microbial compositions of DKD patients were different with healthy individuals whereas similar compositions were observed in DKD patients. Taxon differential analysis showed that when compared with the controls, DKD patients exhibit distinct microbial profiles including reduced abundances of butyrate-produced, anti-inflammatory bacteria Faecalibacterium, Lachnospira, Roseburia Lachnoclostridium, and increased abundances of pro-inflammatory bacteria Collinsella, Streptococcus etc. These distinctive genera presented consistent associations with renal dysfunction, as well as psychological distress, especially in DKD patients. Conclusions: DKD patients, especially those who have progressed to ESRD, exhibit unique characteristics in their gut microbiota that are associated with both renal dysfunction and psychological distress. The gut microbiota may be a significant factor in the deterioration of DKD and its eventual progression to ESRD.


Assuntos
Nefropatias Diabéticas , Microbioma Gastrointestinal , Angústia Psicológica , Humanos , Masculino , Nefropatias Diabéticas/microbiologia , Nefropatias Diabéticas/psicologia , Nefropatias Diabéticas/fisiopatologia , Feminino , Estudos Transversais , Pessoa de Meia-Idade , Falência Renal Crônica/microbiologia , Falência Renal Crônica/psicologia , Falência Renal Crônica/complicações , Idoso , Adulto , Estudos de Casos e Controles
19.
Antioxidants (Basel) ; 13(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38929191

RESUMO

Zearalenone (ZEN) is a common fungal toxin with reproductive toxicity in various grains. It poses a serious threat to ovine and other animal husbandry industries, as well as human reproductive health. Therefore, investigating the mechanism of toxicity and screening antagonistic drugs are of great importance. In this study, based on the natural compound library and previous Smart-seq2 results, antioxidant and anti-apoptotic drugs were selected for screening as potential antagonistic drugs. Three natural plant compounds (oxysophoridine, rutin, and phellodendrine) were screened for their ability to counteract the reproductive toxicity of ZEN on ovine oocytes in vitro using quantitative polymerase chain reaction (qPCR) and reactive oxygen species detection. The compounds exhibited varying pharmacological effects, notably impacting the expression of antioxidant (GPX, SOD1, and SOD2), autophagic (ATG3, ULK2, and LC3), and apoptotic (CAS3, CAS8, and CAS9) genes. Oxysophoridine promoted GPX, SOD1, ULK2, and LC3 expression, while inhibiting CAS3 and CAS8 expression. Rutin promoted SOD2 and ATG3 expression, and inhibited CAS3 and CAS9 expression. Phellodendrine promoted SOD2 and ATG3 expression, and inhibited CAS9 expression. However, all compounds promoted the expression of genes related to cell cycle, spindle checkpoint, oocyte maturation, and cumulus expansion factors. Although the three drugs had different regulatory mechanisms in enhancing antioxidant capacity, enhancing autophagy, and inhibiting cell apoptosis, they all maintained a stable intracellular environment and a normal cell cycle, promoted oocyte maturation and release of cumulus expansion factors, and, ultimately, counteracted ZEN reproductive toxicity to promote the in vitro maturation of ovine oocytes. This study identified three drugs that antagonize the reproductive toxicity of ZEN on ovine oocytes, and compared their mechanisms of action, providing data support and a theoretical basis for their subsequent application in the ovine breeding industry, reducing losses in the breeding industry, screening of ZEN reproductive toxicity antagonists and various toxin antagonists, improving the study of ZEN reproductive toxicity mechanisms, and even protection of human reproductive health.

20.
Anal Bioanal Chem ; 416(22): 4861-4872, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38942955

RESUMO

Accurate diagnostic and serology assays are required for the continued management of the COVID-19 pandemic yet spike protein mutations and intellectual property concerns with antigens and antibodies used in various test kits render comparability assessments difficult. As the use of common, well-characterized reagents can help address this lack of standardization, the National Research Council Canada has produced two protein reference materials (RMs) for use in SARS-CoV-2 serology assays: biotinylated human angiotensin-converting enzyme 2 RM, ACE2-1, and SARS-CoV-2 Omicron BA.4/5 spike protein RM, OMIC-1. Reference values were assigned through a combination of amino acid analysis via isotope dilution liquid chromatography tandem mass spectrometry following acid hydrolysis, and ultraviolet-visible (UV-Vis) spectrophotometry at 280 nm. Vial-to-vial homogeneity was established using UV-Vis measurements, and protein oligomeric status, monitored by size exclusion liquid chromatography (LC-SEC), was used to evaluate transportation, storage, and freeze-thaw stabilities. The molar protein concentration in ACE2-1 was 25.3 ± 1.7 µmol L-1 (k = 2, 95% CI) and consisted almost exclusively (98%) of monomeric ACE2, while OMIC-1 contained 5.4 ± 0.5 µmol L-1 (k = 2) spike protein in a mostly (82%) trimeric form. Glycoprotein molar mass determination by LC-SEC with multi-angle light scattering detection facilitated calculation of corresponding mass concentrations. To confirm protein functionality, the binding of OMIC-1 to immobilized ACE2-1 was investigated with surface plasmon resonance and the resulting dissociation constant, KD ~ 4.4 nM, was consistent with literature values.


Assuntos
Enzima de Conversão de Angiotensina 2 , Padrões de Referência , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Biotinilação , COVID-19/virologia , Teste Sorológico para COVID-19/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA