Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(34): e2302603120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579161

RESUMO

Certain transmembrane and membrane-tethered signaling proteins export from cilia as BBSome cargoes via the outward BBSome transition zone (TZ) diffusion pathway, indispensable for maintaining their ciliary dynamics to enable cells to sense and transduce extracellular stimuli inside the cell. Murine Rab-like 2 (Rabl2) GTPase resembles Chlamydomonas Arf-like 3 (ARL3) GTPase in promoting outward TZ passage of the signaling protein cargo-laden BBSome. During this process, ARL3 binds to and recruits the retrograde IFT train-dissociated BBSome as its effector to diffuse through the TZ for ciliary retrieval, while how RABL2 and ARL3 cross talk in this event remains uncertain. Here, we report that Chlamydomonas RABL2 in a GTP-bound form (RABL2GTP) cycles through cilia via IFT as an IFT-B1 cargo, dissociates from retrograde IFT trains at a ciliary region right above the TZ, and converts to RABL2GDP for activating ARL3GDP as an ARL3 guanine nucleotide exchange factor. This confers ARL3GTP to detach from the ciliary membrane and become available for binding and recruiting the phospholipase D (PLD)-laden BBSome, autonomous of retrograde IFT association, to diffuse through the TZ for ciliary retrieval. Afterward, RABL2GDP exits cilia by being bound to the ARL3GTP/BBSome entity as a BBSome cargo. Our data identify ciliary signaling proteins exported from cilia via the RABL2-ARL3 cascade-mediated outward BBSome TZ diffusion pathway. According to this model, hedgehog signaling defect-induced Bardet-Biedl syndrome caused by RABL2 mutations in humans could be well explained in a mutation-specific manner, providing us with a mechanistic understanding behind the outward BBSome TZ passage required for proper ciliary signaling.


Assuntos
Cílios , Proteínas Hedgehog , Humanos , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Cílios/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico/genética , Proteínas rab de Ligação ao GTP/metabolismo , Chlamydomonas
2.
Digit Health ; 9: 20552076231183548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434729

RESUMO

Objective: This study aims to establish a real-time dynamic monitoring system for silent aspiration (SA) to provide evidence for the early diagnosis of and precise intervention for SA after stroke. Methods: Multisource signals, including sound, nasal airflow, electromyographic, pressure and acceleration signals, will be obtained by multisource sensors during swallowing events. The extracted signals will be labeled according to videofluoroscopic swallowing studies (VFSSs) and input into a special dataset. Then, a real-time dynamic monitoring model for SA will be built and trained based on semisupervised deep learning. Model optimization will be performed based on the mapping relationship between multisource signals and insula-centered cerebral cortex-brainstem functional connectivity through resting-state functional magnetic resonance imaging. Finally, a real-time dynamic monitoring system for SA will be established, of which the sensitivity and specificity will be improved by clinical application. Results: Multisource signals will be stably extracted by multisource sensors. Data from a total of 3200 swallows will be obtained from patients with SA, including 1200 labeled swallows from the nonaspiration category from VFSSs and 2000 unlabeled swallows. A significant difference in the multisource signals is expected to be found between the SA and nonaspiration groups. The features of labeled and pseudolabeled multisource signals will be extracted through semisupervised deep learning to establish a dynamic monitoring model for SA. Moreover, strong correlations are expected to be found between the Granger causality analysis (GCA) value (from the left middle frontal gyrus to the right anterior insula) and the laryngeal rise time (LRT). Finally, a dynamic monitoring system will be established based on the former model, by which SA can be identified precisely. Conclusion: The study will establish a real-time dynamic monitoring system for SA with high sensitivity, specificity, accuracy and F1 score.

3.
Proc Natl Acad Sci U S A ; 120(13): e2218819120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943875

RESUMO

Certain ciliary transmembrane and membrane-tethered signaling proteins migrate from the ciliary tip to base via retrograde intraflagellar transport (IFT), essential for maintaining their ciliary dynamics to enable cells to sense and transduce extracellular stimuli inside the cell. During this process, the BBSome functions as an adaptor between retrograde IFT trains and these signaling protein cargoes. The Arf-like 13 (ARL13) small GTPase resembles ARL6/BBS3 in facilitating these signaling cargoes to couple with the BBSome at the ciliary tip prior to loading onto retrograde IFT trains for transporting towards the ciliary base, while the molecular basis for how this intricate coupling event happens remains elusive. Here, we report that Chlamydomonas ARL13 only in a GTP-bound form (ARL13GTP) anchors to the membrane for diffusing into cilia. Upon entering cilia, ARL13 undergoes GTPase cycle for shuttling between the ciliary membrane (ARL13GTP) and matrix (ARL13GDP). To achieve this goal, the ciliary membrane-anchored BBS3GTP binds the ciliary matrix-residing ARL13GDP to activate the latter as an ARL13 guanine nucleotide exchange factor. At the ciliary tip, ARL13GTP recruits the ciliary matrix-residing and post-remodeled BBSome as an ARL13 effector to anchor to the ciliary membrane. This makes the BBSome spatiotemporally become available for the ciliary membrane-tethered phospholipase D (PLD) to couple with. Afterward, ARL13GTP hydrolyzes GTP for releasing the PLD-laden BBSome to load onto retrograde IFT trains. According to this model, hedgehog signaling defects associated with ARL13b and BBS3 mutations in humans could be satisfactorily explained, providing us a mechanistic understanding behind BBSome-cargo coupling required for proper ciliary signaling.


Assuntos
Síndrome de Bardet-Biedl , Cílios , Humanos , Cílios/metabolismo , Transporte Proteico/genética , Síndrome de Bardet-Biedl/genética , Proteínas Hedgehog/metabolismo , Proteínas de Membrana/metabolismo , Guanosina Trifosfato/metabolismo , Flagelos/metabolismo
4.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768602

RESUMO

Colorectal carcinoma (CRC) is a kind of malignant tumor closely related to ulcerative colitis. Xanthone derivatives are one of the most promising therapeutic drugs which have been used in phase I/II clinical trials for cancer therapy. Our previous study indicated that the aerial parts of Gentianella acuta Michx. Hulten (GA) was rich in xanthones and showed a good therapeutic effect on ulcerative colitis in mice, suggesting that GA xanthones might have some therapeutic or ameliorative effects on CRC. However, no relevant study has been reported. This study aims to find the effective substances of GA inhibiting CRC and clarify their mechanism. Solvent extraction, column chromatographic separation, and LC-MS analysis were used to characterize the 70% EtOH extract of GA and track xanthones abundant fraction XF. MTT assay was carried out to clarify the activity of GA fractions; the result showed XF to be the main active fraction. LC-MS analysis was executed to characterize XF, 38 xanthones were identified. Network pharmacology prediction, in vitro activity screening, and molecular docking assay were combined to predict the potential mechanism; the PI3K/Akt/mTOR signaling pathway was found to be most important. Western blot assay on the main active xanthones 1,3,5-trihydroxyxanthone (16), 1,3,5,8-tetrahydroxyxanthone (17), 1,5,8-trihydroxy-3-methoxyxanthone (18), and 1,7-dihydroxy-3,8-dimethoxyxanthone (19) was used to verify the above prediction; these xanthones were found to inhibit the PI3K/Akt/mTOR signaling pathway, and 17 played a significant role among them through Western blot assay using PI3K/AKT/mTOR agonist IGF-1. In conclusion, this study demonstrated that GA xanthones were effective compounds of GA inhibiting CRC by regulating PI3K/Akt/mTOR signaling pathway transduction, at least. Importantly, 1,3,5,8-tetrahydroxyxanthone (17), the most abundant active xanthone in GA, might be a candidate drug for CRC.


Assuntos
Colite Ulcerativa , Neoplasias Colorretais , Gentianella , Xantonas , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Gentianella/química , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Xantonas/farmacologia , Xantonas/química , Neoplasias Colorretais/tratamento farmacológico , Proliferação de Células
5.
J Cell Physiol ; 238(3): 549-565, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36852649

RESUMO

Certain ciliary transmembrane and membrane-associated signaling proteins export from cilia as intraflagellar transport (IFT) cargoes in a BBSome-dependent manner. Upon reaching the ciliary tip via anterograde IFT, the BBSome disassembles before being reassembled to form an intact entity for cargo phospholipase D (PLD) coupling. During this BBSome remodeling process, Chlamydomonas Rab-like 4 GTPase IFT27, by binding its partner IFT25 to form the heterodimeric IFT25/27, is indispensable for BBSome reassembly. Here, we show that IFT27 binds IFT25 in an IFT27 nucleotide-independent manner. IFT25/27 and the IFT subcomplexes IFT-A and -B are irrelevant for maintaining the stability of one another. GTP-loading onto IFT27 enhances the IFT25/27 affinity for binding to the IFT-B subcomplex core IFT-B1 entity in cytoplasm, while GDP-bound IFT27 does not prevent IFT25/27 from entering and cycling through cilia by integrating into IFT-B1. Upon at the ciliary tip, IFT25/27 cycles on and off IFT-B1 and this process is irrelevant with the nucleotide state of IFT27. During BBSome remodeling at the ciliary tip, IFT25/27 promotes BBSome reassembly independent of IFT27 nucleotide state, making postremodeled BBSomes available for PLD to interact with. Thus, IFT25/27 facilitates BBSome-dependent PLD export from cilia via controlling availability of intact BBSomes at the ciliary tip, while IFT27 nucleotide state does not participate in this regulatory event.


Assuntos
Chlamydomonas , Cílios , Nucleotídeos , Fosfolipase D , Proteínas rab de Ligação ao GTP , Cílios/química , Cílios/metabolismo , Flagelos/química , Flagelos/metabolismo , Fosfolipase D/metabolismo , Transporte Proteico , Transdução de Sinais , Chlamydomonas/citologia , Chlamydomonas/enzimologia , Chlamydomonas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Guanosina Trifosfato/metabolismo , Guanosina Difosfato/metabolismo
6.
China Tropical Medicine ; (12): 106-2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-979597

RESUMO

@#Abstract: Objective To analyze the laboratory indexes of patients infected with malaria patients and COVID-19, so as to provide reliable evidence for the diagnosis of mixed infection of both. Methods The routine clinical laboratory items such as routine blood, biochemistry and lymphocyte subsets were tested in three cases of COVID-19 complicated with falciparum malaria who admitted to Guangzhou Eighth People's Hospital Affiliated to Guangzhou Medical University from July to December 2020 were tested. Laboratory data were stage-wise analyzed in conjunction with changes in the course of disease. Results Three patients confirmed COVID-19 infection recruited all had malaria infection history. Fever, headache, and other symptoms emerged on the 4rd to 11th day after admission. Malaria parasite was detected by malaria parasite antigen testing and blood smear testing, and all three patients had re-ignition of malaria after being confirmed COVID-19 infection. In the early stage of malaria relapse, lymphocytes decreased, CRP and SAA increased, and gradually returned to normal level after antimalarial treatment. Interestingly, we only found one patient at the initial stage of malaria detection showed PLT decreased, no other unnormal changes in other routine blood results (WBC, ESO) and liver function results (ALT, AST, GGT, TBIL, DBIL, CG) were found from the beginning to end course of the disease. Conclusion COVID-19 infection may promote the resurgence of malaria, so the relapse of malaria should be monitored especially for the patient with malaria infection history who begin to develop fever and other symptoms a few days after the diagnosis of COVID-19. The inflammatory indicators would be worth able as an auxiliary judgment basis for the effective treatment of the two combined infection.

7.
J Cell Biol ; 221(10)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36129685

RESUMO

Ciliary receptors and their certain downstream signaling components undergo intraflagellar transport (IFT) as BBSome cargoes to maintain their ciliary dynamics for sensing and transducing extracellular stimuli inside the cell. Cargo-laden BBSomes pass the transition zone (TZ) for ciliary retrieval, but how this passage is controlled remains elusive. Here, we show that phospholipase D (PLD)-laden BBSomes shed from retrograde IFT trains at the proximal ciliary region right above the TZ to act as Arf-like 3 (ARL3) GTPase-specific effectors in Chlamydomonas cilia. Under physiological condition, ARL3GDP binds to the membrane for diffusing into cilia. Following nucleotide exchange, ARL3GTP detaches from the ciliary membrane, binds to retrograde IFT train-shed and PLD-laden BBSomes at the proximal ciliary region right above the TZ, and recruits them to pass the TZ for ciliary retrieval likely via diffusion. ARL3 mediates the ciliary dynamics of certain signaling molecules through facilitating BBSome ciliary retrieval, providing a mechanistic understanding behind why ARL3-related Joubert syndrome shares overlapping phenotypes with Bardet-Biedl syndrome.


Assuntos
Fatores de Ribosilação do ADP , Chlamydomonas , Cílios , Transporte Proteico , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Chlamydomonas/metabolismo , Cílios/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Nucleotídeos/metabolismo , Fosfolipase D/metabolismo
8.
Bioengineered ; 13(3): 5480-5508, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35184680

RESUMO

The pandemic of coronavirus disease 2019 (COVID-19) caused by the SARS-coronavirus 2(SARS-CoV-2) virus has become the greatest global public health crisis in recent years,and the COVID-19 epidemic is still continuing. However, due to the lack of effectivetherapeutic drugs, the treatment of corona viruses is facing huge challenges. In thiscontext, countries with a tradition of using herbal medicine such as China have beenwidely using herbal medicine for prevention and nonspecific treatment of corona virusesand achieved good responses. In this review, we will introduce the application of herbalmedicine in the treatment of corona virus patients in China and other countries, andreview the progress of related molecular mechanisms and antiviral activity ingredients ofherbal medicine, in order to provide a reference for herbal medicine in the treatment ofcorona viruses. We found that herbal medicines are used in the prevention and fightagainst COVID-19 in countries on all continents. In China, herbal medicine has beenreported to relieve some of the clinical symptoms of mild patients and shorten the length of hospital stay. However, as most herbal medicines for the clinical treatment of COVID-19still lack rigorous clinical trials, the clinical and economic value of herbal medicines in theprevention and treatment of COVID-19 has not been fully evaluated. Future work basedon large-scale randomized, double-blind clinical trials to evaluate herbal medicines andtheir active ingredients in the treatment of new COVID-19 will be very meaningful.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas/uso terapêutico , Plantas Medicinais/química , SARS-CoV-2/efeitos dos fármacos , Antivirais/isolamento & purificação , COVID-19/patologia , COVID-19/virologia , China , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicina Herbária/métodos , Humanos , Medicina Tradicional Chinesa/métodos , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade
9.
Molecules ; 28(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36615232

RESUMO

Essential oils (EOs) are primarily isolated from medicinal plants and possess various biological properties. However, their low water solubility and volatility substantially limit their application potential. Therefore, the aim of the current study was to improve the solubility and stability of the Mosla Chinensis (M. Chinensis) EO by forming an inclusion complex (IC) with ß-cyclodextrin (ß-CD). Furthermore, the IC formation process was investigated using experimental techniques and molecular modeling. The major components of M. Chinensis 'Jiangxiangru' EOs were carvacrol, thymol, o-cymene, and terpinene, and its IC with ß-CD were prepared using the ultrasonication method. Multivariable optimization was studied using a Plackett-Burman design (step 1, identifying key parameters) followed by a central composite design for optimization of the parameters (step 2, optimizing the key parameters). SEM, FT-IR, TGA, and dissolution experiments were performed to analyze the physicochemical properties of the ICs. In addition, the interaction between EO and ß-CD was further investigated using phase solubility, molecular docking, and molecular simulation studies. The results showed that the optimal encapsulation efficiency and loading capacity of EO in the ICs were 86.17% and 8.92%, respectively. Results of physicochemical properties were different after being encapsulated, indicating that the ICs had been successfully fabricated. Additionally, molecular docking and dynamics simulation showed that ß-CD could encapsulate the EO component (carvacrol) via noncovalent interactions. In conclusion, a comprehensive methodology was developed for determining key parameters under multivariate conditions by utilizing two-step optimization experiments to obtain ICs of EO with ß-CD. Furthermore, molecular modeling was used to study the mechanisms involved in molecular inclusion complexation.


Assuntos
Óleos Voláteis , beta-Ciclodextrinas , Óleos Voláteis/química , Simulação de Acoplamento Molecular , Projetos de Pesquisa , Espectroscopia de Infravermelho com Transformada de Fourier , beta-Ciclodextrinas/química , Solubilidade , Varredura Diferencial de Calorimetria , 2-Hidroxipropil-beta-Ciclodextrina/química
10.
Microbiol Spectr ; 9(2): e0153121, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34668747

RESUMO

The microbial carbon pump (MCP) provides a mechanistic illustration of transformation of recalcitrant dissolved organic matter (DOM) in the ocean. Here, we explored and demonstrated the key roles of algae-associated microorganisms (mainly heterotrophic bacteria) in the production and transformation of carboxyl-rich alicyclic molecule (CRAM)-like DOM through a laboratory experiment involving cultures of Skeletonema dohrnii. Without the participation of the associated bacteria, CRAM-like DOM molecules were not detected via Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in algal cultures treated with antibiotics. Similarly, CRAM-like DOM were not detected in cultures of bacteria alone. Our experimental results showed that algae-associated bacteria are important in the process of converting algal-derived organic matter into CRAM-like DOM during S. dohrnii culture. Bacteroidetes (mainly Flavobacteriia) dominated the bacterial community in the stationary and degradation phases, where the predicted metabolic pathways for bacterial assemblages were mainly involved in biosynthesis, metabolism, and degradation. Facilitated by these heterotrophic bacteria, the amount and the chemodiversity of CRAM-like DOM derived from algae varied during the growth and decomposition of algal cells, and CRAM-like DOM were enriched at the later growth stage. The properties and characteristics of these CRAM-like DOM, including molecular weight, double bond equivalent, hydrogen-carbon ratio, carbon-nitrogen ratio, carbon-sulfur ratio, and modified aromaticity index increased with the growth and decay of algal cells, indicating the transformation from active to recalcitrant DOM. In contrast, the organic matter in axenic cultures of S. dohrnii mainly existed in the form of particulate organic matters (POM), and small amounts of CRAM-like DOM were detected. This study provides the first laboratory evidence to reveal and confirm the direct involvement of algae-associated microbiomes in the production and transformation of algae-derived refractory DOM, highlighting the significance of these epiphytic bacteria in marine carbon sequestration and global carbon cycling. IMPORTANCE Dissolved organic matter (DOM) serves as a major carbon and nutrient pool in oceans, and recalcitrant DOM are the primary sources for carbon sequestration in depths. Here, we demonstrate the critical roles of algae-associated microorganisms (mainly heterotrophic bacteria) in the transformation of recalcitrant dissolved organic matter through laboratory cultures of a model diatom, Skeletonema dohrnii. Our experimental results showed that in addition to affecting the growth and the physiology of S. dohrnii, algae-associated bacteria are important in processing and converting algal DOM into CRAM-like DOM. Facilitated by the associated bacteria, the amount and the chemodiversity of DOM derived from algae varied during the growth and decomposition of algal cells, and enriched recalcitrant DOM formed in the later growth stage. The properties and diversity of DOM increased with the growth and decay of algal cells, indicating the transformation from active DOM to inert organic matter. Our results confirmed that the direct involvement of algae-associated microbes in the production of CRAM-like DOM. Detailed community structure analysis of the algae-associated bacterial community and its predicted functions confirmed the involvement of certain bacterial groups (e.g., Flavobacteriia) in biosynthesis, metabolism, and degradation.


Assuntos
Bactérias/metabolismo , Carbono/metabolismo , Clorófitas/metabolismo , Matéria Orgânica Dissolvida/metabolismo , Fitoplâncton/microbiologia , Bactérias/química , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biotransformação , Clorófitas/química , Clorófitas/crescimento & desenvolvimento , Clorófitas/microbiologia , Diatomáceas/química , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/metabolismo , Diatomáceas/microbiologia , Matéria Orgânica Dissolvida/química , Lagos/química , Lagos/microbiologia , Espectrometria de Massas , Fitoplâncton/química , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34446551

RESUMO

Many G protein-coupled receptors and other signaling proteins localize to the ciliary membrane for regulating diverse cellular processes. The BBSome composed of multiple Bardet-Biedl syndrome (BBS) proteins is an intraflagellar transport (IFT) cargo adaptor essential for sorting signaling proteins in and/or out of cilia via IFT. Leucine zipper transcription factor-like 1 (LZTFL1) protein mediates ciliary signaling by controlling BBSome ciliary content, reflecting how LZTFL1 mutations could cause BBS. However, the mechanistic mechanism underlying this process remains elusive thus far. Here, we show that LZTFL1 maintains BBSome ciliary dynamics by finely controlling BBSome recruitment to the basal body and its reassembly at the ciliary tip simultaneously in Chlamydomonas reinhardtii LZTFL1 directs BBSome recruitment to the basal body via promoting basal body targeting of Arf-like 6 GTPase BBS3, thus deciding the BBSome amount available for loading onto anterograde IFT trains for entering cilia. Meanwhile, LZTFL1 stabilizes the IFT25/27 component of the IFT-B1 subcomplex in the cell body so as to control its presence and amount at the basal body for entering cilia. Since IFT25/27 promotes BBSome reassembly at the ciliary tip for loading onto retrograde IFT trains, LZTFL1 thus also directs BBSome removal out of cilia. Therefore, LZTFL1 dysfunction deprives the BBSome of ciliary presence and generates Chlamydomonas cells defective in phototaxis. In summary, our data propose that LZTFL1 maintains BBSome dynamics in cilia by such a dual-mode system, providing insights into how LZTFL1 mediates ciliary signaling through maintaining BBSome ciliary dynamics and the pathogenetic mechanism of the BBS disorder as well.


Assuntos
Chlamydomonas reinhardtii/fisiologia , Cílios/fisiologia , Fototaxia , Fatores de Transcrição/fisiologia , Síndrome de Bardet-Biedl , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligação Proteica , Transdução de Sinais
12.
Lab Invest ; 101(11): 1484-1493, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34446806

RESUMO

Leydig cells (LCs) apoptosis is responsible for the deficiency of serum testosterone in Late-onset hypogonadism (LOH), while its specific mechanism is still unknown. This study focuses on the role of long noncoding RNA (lncRNA) MIR22HG in LC apoptosis and aims to elaborate its regulatory mechanism. MIR22HG was up-regulated in the testicular tissues of mice with LOH and H2O2-treated TM3 cells (mouse Leydig cell line). Interference of MIR22HG ameliorated cell apoptosis and upregulated miR-125a-5p expression in H2O2-treated TM3 cells. Then, the interaction between MIR22HG and miR-125a-5p was confirmed with RIP and RNA pull-down assay. Further study showed that miR-125a-5p downregulated N-Myc downstream-regulated gene 2 (NDRG2) expression by targeting its 3'-UTR of mRNA. What's more, MIR22HG overexpression aggravated cell apoptosis and reduced testosterone production in TM3 cells via miR-125a-5p/NDRG2 pathway. MIR22HG knockdown elevated testosterone levels in LOH mice. In conclusion, MIR22HG up-regulated NDRG2 expression through targeting miR-125a-5p, thus promoting LC apoptosis in LOH.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hipogonadismo/etiologia , Células Intersticiais do Testículo/fisiologia , MicroRNAs/metabolismo , MicroRNAs/fisiologia , Animais , Apoptose , Linhagem Celular , Masculino , Camundongos , Testosterona/metabolismo
13.
Elife ; 102021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33587040

RESUMO

Certain ciliary signaling proteins couple with the BBSome, a conserved complex of Bardet-Biedl syndrome (BBS) proteins, to load onto retrograde intraflagellar transport (IFT) trains for their removal out of cilia in Chlamydomonas reinhardtii. Here, we show that loss of the Arf-like 6 (ARL6) GTPase BBS3 causes the signaling protein phospholipase D (PLD) to accumulate in cilia. Upon targeting to the basal body, BBSomes enter and cycle through cilia via IFT, while BBS3 in a GTP-bound state separates from BBSomes, associates with the membrane, and translocates from the basal body to cilia by diffusion. Upon arriving at the ciliary tip, GTP-bound BBS3 binds and recruits BBSomes to the ciliary membrane for interacting with PLD, thus making the PLD-laden BBSomes available to load onto retrograde IFT trains for ciliary exit. Therefore, BBS3 promotes PLD exit from cilia via the BBSome, providing a regulatory mechanism for ciliary signaling protein removal out of cilia.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Chlamydomonas reinhardtii/metabolismo , Cílios/metabolismo , Fosfolipase D/metabolismo , Fatores de Ribosilação do ADP/genética , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/genética , Cílios/genética , Flagelos/enzimologia , Flagelos/genética , Flagelos/metabolismo , Fosfolipase D/genética , Transporte Proteico
14.
J Oncol ; 2021: 9365953, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35251167

RESUMO

BACKGROUND: Improving the osteosarcoma (OS) patients' survival has long been a challenge, even though the disease's treatment is on the verge of progress. DNA damage response (DDR) has traditionally been associated with carcinogenesis, tumor growth, and genomic instability. No study has used DDR genes as a signature to identify the prognosis of OS. The goal of this work was to find an effective possible DDR gene biomarker for predicting OS prognosis, which may be useful in clinical diagnosis and therapy. METHODS: To assess gene methylation, univariate and multivariate cox regression analyses were performed on data from OS patients. The data were retrieved from public databases, including the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and the Gene Expression Omnibus (GEO). RESULTS: The DDR gene signature was chosen, which included seven genes (NHEJ1, RMI2, SWI5, ERCC2, CLK2, POLG, and MLH1). In the TARGET dataset, patients were categorized into two groups: high-risk and low-risk. Patients with a high-risk score revealed a shorter OS rate (hazard ratio (HR): 3.15, 95% confidence interval (CI): 1.38-4.34, P < 0.001) in comparison with the patients with a low-risk score in the TARGET as a training group. The validation of the prognostic signature accuracy was carried out in relapse and validation cohorts (TARGET, n = 75; GSE21257, n = 53). The signature was found to be an independent predictive factor for OS in multivariate cox regression analysis, and a nomogram model was developed to predict an individual's risk of OS. DDR gene signature involved in Fanconi anemia pathway, nonhomologous end-joining pathway, mismatch repair, and nucleotide excision repair pathway. CONCLUSIONS: Our study suggests that the identified novel DDR genes could be a powerful prognostic tool for prognosis evaluation and a valuable tool in predicting the risk factors in OS patients.

15.
Huan Jing Ke Xue ; 42(1): 492-500, 2021 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-33372503

RESUMO

With further improvements to meet social requirements for healthy and comfortable living, the research of micro-scale thermal environments has been received increasing attention. The key to micro-scale thermal environment study is the underlying surface temperature field simulation, which requires high precision results. Taking a typical area of the Jiangning District, Nanjing City, as a study area, this study used a UAV equipped with a thermal infrared imager to obtain surface temperature data in summer and autumn because of the limitation of the traditional ground measurements. Then, the numerical simulation software of ENVI-met and PALM-4U were utilized to conduct the surface temperature filed simulation. The simulation results were further analyzed combined with measured data. The modeling results indicated that the numerical simulation has high spatial accuracy, which can be applied to the study of the urban micro-thermal environment. Furthermore, the simulation effect of the model on the artificial surface is better than that of the natural surface, and the simulation effect of the open surface is better than that of the non-open surface. The study also found that the simulation effect of ENVI-met under the influence of occlusion was better than that of PALM-4U. The vegetation occlusion PALM-4U was less effective than that of ENVI-met, although both models correctly predicted the ground temperature under the occlusion of buildings. The overall conclusion indicates that the applicability of ENVI-met is superior to that of PLAM-4U for urban micro-thermal environment simulation. The study can provide a reference for the high-resolution remote sensing research of urban micro-scale thermal environments.

16.
Am J Nephrol ; 51(5): 401-410, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32320986

RESUMO

BACKGROUND: Human cellular repressor of E1A-stimulated genes (CREG) is a secreted glycoprotein that attenuates angiotensin II-induced hypertension, alleviates myocardial fibrosis, and improves heart function. However, the role of CREG in high-salt (HS) diet-induced hypertensive nephropathy is unclear. METHODS: To determine the effects and molecular mechanisms of CREG in HS diet-induced hypertensive nephropathy, we established a hypertensive nephropathy animal model in Dahl salt-sensitive (SS) rats fed a HS diet (8% NaCl, n = 20) for 8 weeks. At week 4 of HS loading, these rats were administered recombinant CREG (reCREG; 35 µg/kg·day, n = 5) and saline (n = 5) via subcutaneously implanted pumps and were also administered the vasodilator hydralazine (20 mg/kg·day, n = 5) in drinking water. We used hematoxylin and eosin staining, Masson's trichrome staining, immunohistochemical labeling, western blotting, RT-PCR, and Tunel staining to determine the signaling pathways of CREG in HS diet-induced hypertensive nephropathy. RESULTS: After 8 weeks of HS intake, the Dahl SS rats developed renal dysfunction and severe renal fibrosis associated with reductions of 78 and 67% in CREG expression, respectively, at both mRNA and protein levels in the kidney. Administration of reCREG improved renal function and relieved renal fibrosis. Administration of CREG also inhibited monocyte infiltration and reduced apoptosis in the kidney cells. CREG overexpression upregulated forkhead box P1 expression and inhibited the transforming growth factor-ß1 signaling pathway. CONCLUSION: Our study shows that CREG protected the kidney against HS-diet-induced renal damage and provides new insights into the mechanisms underlying kidney injury.


Assuntos
Hipertensão Renal/tratamento farmacológico , Rim/patologia , Nefrite/tratamento farmacológico , Proteínas Repressoras/administração & dosagem , Cloreto de Sódio na Dieta/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Fibrose , Humanos , Hipertensão Renal/etiologia , Hipertensão Renal/patologia , Rim/efeitos dos fármacos , Masculino , Nefrite/etiologia , Nefrite/patologia , Ratos , Ratos Endogâmicos Dahl , Proteínas Recombinantes/administração & dosagem , Proteínas Repressoras/análise , Proteínas Repressoras/metabolismo
17.
Proc Natl Acad Sci U S A ; 117(5): 2496-2505, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31953262

RESUMO

Bardet-Biedl syndrome (BBS) is a ciliopathy caused by defects in the assembly or distribution of the BBSome, a conserved protein complex. The BBSome cycles via intraflagellar transport (IFT) through cilia to transport signaling proteins. How the BBSome is recruited to the basal body for binding to IFT trains for ciliary entry remains unknown. Here, we show that the Rab-like 5 GTPase IFT22 regulates basal body targeting of the BBSome in Chlamydomonas reinhardtii Our functional, biochemical and single particle in vivo imaging assays show that IFT22 is an active GTPase with low intrinsic GTPase activity. IFT22 is part of the IFT-B1 subcomplex but is not required for ciliary assembly. Independent of its association to IFT-B1, IFT22 binds and stabilizes the Arf-like 6 GTPase BBS3, a BBS protein that is not part of the BBSome. IFT22/BBS3 associates with the BBSome through an interaction between BBS3 and the BBSome. When both IFT22 and BBS3 are in their guanosine triphosphate (GTP)-bound states they recruit the BBSome to the basal body for coupling with the IFT-B1 subcomplex. The GTP-bound BBS3 likely remains to be associated with the BBSome upon ciliary entry. In contrast, IFT22 is not required for the transport of BBSomes in cilia, indicating that the BBSome is transferred from IFT22 to the IFT trains at the ciliary base. In summary, our data propose that nucleotide-dependent recruitment of the BBSome to the basal body by IFT22 regulates BBSome entry into cilia.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Corpos Basais/metabolismo , Chlamydomonas reinhardtii/metabolismo , Flagelos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Fatores de Ribosilação do ADP/genética , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Chlamydomonas reinhardtii/genética , Cílios/genética , Cílios/metabolismo , Flagelos/genética , GTP Fosfo-Hidrolases/genética , Humanos , Ligação Proteica , Transporte Proteico
18.
Exp Ther Med ; 18(4): 2739-2745, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31572521

RESUMO

Interleukin (IL)-37 has an important role in autoimmune diseases by suppressing immunity and inflammation; however, the role of IL-37 in immune thrombocytopenia (ITP) has remained largely elusive. The present study aimed to investigate the expression of IL-37 and its potential role in the pathogenesis of ITP. The plasma levels and expression of IL-37 in the peripheral blood mononuclear cells of patients with active ITP, ITP patients in remission and healthy controls were measured by ELISA and reverse transcription-quantitative PCR, respectively. The levels of IL-37 in patients with ITP treated with and without glucocorticoids were also determined by ELISA. Specific anti-platelet glycoprotein (GP)IIb/IIIa and/or GPIb/IX autoantibodies were assayed by modified monoclonal antibody-specific immobilization of platelet antigens. The mean value of plasma IL-37 in ITP patients was slightly higher than that in healthy controls, but this was not statistically significant. There was no correlation between IL-37 and anti-platelet autoantibodies, and no significant difference in the IL-37 concentration was identified between patients treated with and without glucocorticoids. In addition, the correlation between IL-37 and the platelet count was analyzed, with no statistical significance observed. It was therefore concluded that IL-37 may not have a pivotal role in the development of ITP. However, the lack of significant differences may be due to the limited number of patients in different groups. A larger number of ITP patients should be enrolled in the future work and achieve more accurate results.

19.
Mol Med Rep ; 20(1): 455-462, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31180535

RESUMO

Acute lung injury (ALI) is a major cause of morbidity and mortality globally, and is characterized by widespread inflammation in the lungs. Increased production of reactive oxygen species is hypothesized to be associated with ALI. Matrine and lycopene are active products present in traditional Chinese medicine. Matrine is an effective inhibitor of inflammation, whereas lycopene decreases lipid peroxidation. Therefore, it was hypothesized that combinatorial treatment with matrine and lycopene may provide synergistic protection against ALI. In the present study, mice were treated with dexamethasone (DEX; 5 mg/kg), matrine (25 mg/kg), lycopene (100 mg/kg), and matrine (25 mg/kg) + lycopene (100 mg/kg) for 7 days prior to injury induction using lipopolysaccharide (LPS; 5 mg/kg) for 6 h. Lung tissues were collected following the sacrifice of the mice and hematoxylin and eosin staining was used for histological analysis. Malondialdehyde (MDA), glutathione (GSH) and myeloperoxidas (MPO) levels were examined by respective kits. The expressions of interleukin­6 (IL­6) and tumor necrosis factor­α (TNF­α) were evaluated by ELISA. The expressions of IκBα and NF­κB p65 were examined by reverse transcription­quantitative polymerase chain reaction, western blotting and immunohistochemistry. The results indicated that the combined treatment exhibited a similar effect to DEX, both of which attenuated lung structural injuries, downregulated the expressions of IL­6, TNF­α, MPO and MDA, and upregulated that of GSH. Furthermore, the combined treatment and DEX inhibited NF­κB p65 activation. The present study revealed that combined treatment with matrine and lycopene exhibited protective effects on an LPS­induced mouse model of ALI, suggesting that they may serve as a potential alternative to glucocorticoid therapy for ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Alcaloides/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Licopeno/uso terapêutico , Quinolizinas/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Animais , Sinergismo Farmacológico , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Matrinas
20.
Chem Biol Interact ; 306: 29-38, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30954463

RESUMO

Resveratrol, found in variety of plants, is a natural stilbene structure polyphenol. It has various pharmacological effects, such as antioxidation, anti-aging, anti-inflammation, anti-cancer, antiobesity, anti-diabetes, cardioprotection, neuroprotection. Recently, anti-leukemia activities of resveratrol has been studied extensively via its effects on a variety of biological processes involving cell proliferation, apoptosis, autophagy. Current treatments of leukemia mainly rely on intensive chemotherapy or hematopoietic stem cell transplantation, however, these treatments are still with poor survival and high treatment-related mortality. Therefore, it is extremely needed to find relatively non-toxic medicines with minimal side effects but sufficient therapeutic efficacy. Resveratrol is one such potential candidate owing to its reported anti-leukemia effect. In this review, we summarized resveratrol's discovery, sources and isolation methods, administration methods, effects in different types of leukemia, pharmacokinetics and toxicities, aiming to exploit resveratrol as a potential drug candidate for anti-leukemia.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Descoberta de Drogas , Leucemia/tratamento farmacológico , Resveratrol/farmacologia , Antineoplásicos Fitogênicos/efeitos adversos , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Leucemia/patologia , Resveratrol/efeitos adversos , Resveratrol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...