Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(4)2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38674433

RESUMO

Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is able to infect many economically important crops and thus causes substantial losses in the global agricultural economy. Pst DC3000 can be divided into virulent lines and avirulent lines. For instance, the pathogen effector avrRPM1 of avirulent line Pst-avrRpm1 (Pst DC3000 avrRpm1) can be recognized and detoxified by the plant. To further compare the pathogenicity mechanisms of virulent and avirulent Pst DC3000, a comprehensive analysis of the acetylome and succinylome in Arabidopsis thaliana was conducted following infection with virulent line Pst DC3000 and avirulent line Pst-avrRpm1. In this study, a total of 1625 acetylated proteins encompassing 3423 distinct acetylation sites were successfully identified. Additionally, 229 succinylated proteins with 527 unique succinylation sites were detected. A comparison of these modification profiles between plants infected with Pst DC3000 and Pst-avrRpm1 revealed significant differences. Specifically, modification sites demonstrated inconsistencies, with a variance of up to 10% compared to the control group. Moreover, lysine acetylation (Kac) and lysine succinylation (Ksu) displayed distinct preferences in their modification patterns. Lysine acetylation is observed to exhibit a tendency towards up-regulation in Arabidopsis infected with Pst-avrRpm1. Conversely, the disparity in the number of Ksu up-regulated and down-regulated sites was not as pronounced. Motif enrichment analysis disclosed that acetylation modification sequences are relatively conserved, and regions rich in polar acidic/basic and non-polar hydrophobic amino acids are hotspots for acetylation modifications. Functional enrichment analysis indicated that the differentially modified proteins are primarily enriched in the photosynthesis pathway, particularly in relation to light-capturing proteins. In conclusion, this study provides an insightful profile of the lysine acetylome and succinylome in A. thaliana infected with virulent and avirulent lines of Pst DC3000. Our findings revealed the potential impact of these post-translational modifications (PTMs) on the physiological functions of the host plant during pathogen infection. This study offers valuable insights into the complex interactions between plant pathogens and their hosts, laying the groundwork for future research on disease resistance and pathogenesis mechanisms.


Assuntos
Arabidopsis , Lisina , Doenças das Plantas , Proteoma , Pseudomonas syringae , Acetilação , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Lisina/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Proteômica , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/metabolismo , Pseudomonas syringae/genética , Virulência/genética
2.
Cell Rep ; 42(10): 113208, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37792531

RESUMO

Clathrin-mediated vesicular formation and trafficking are responsible for molecular cargo transport and signal transduction among organelles. Our previous study shows that CHLOROPLAST VESICULATION (CV)-containing vesicles (CVVs) are generated from chloroplasts for chloroplast degradation under abiotic stress. Here, we show that CV interacts with the clathrin heavy chain (CHC) and induces vesicle budding toward the cytosol from the chloroplast inner envelope membrane. In the defective mutants of CHC2 and the dynamin-encoding DRP1A, CVV budding and releasing from chloroplast are impeded. The mutations of CHC2 inhibit CV-induced chloroplast degradation and hypersensitivity to water stress. Moreover, CV-CHC2 interaction is impaired by the oxidized GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (GAPC). GAPC1 overexpression suppresses CV-mediated chloroplast degradation and hypersensitivity to water stress, while CV silencing alleviates the hypersensitivity of the gapc1gapc2 plant to water stress. Together, our work identifies a pathway of clathrin-assisted CVV budding outward from chloroplast, which is involved in chloroplast degradation and stress response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Desidratação/metabolismo , Cloroplastos/metabolismo , Clatrina/metabolismo , Endocitose/fisiologia
3.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499349

RESUMO

Salt-alkali stress threatens the resilience to variable environments and thus the grain yield of rice. However, how rice responds to salt-alkali stress at the molecular level is poorly understood. Here, we report isolation of a novel salt-alkali-tolerant rice (SATR) by screening more than 700 germplasm accessions. Using 93-11, a widely grown cultivar, as a control, we characterized SATR in response to strong salt-alkali stress (SSAS). SATR exhibited SSAS tolerance higher than 93-11, as indicated by a higher survival rate, associated with higher peroxidase activity and total soluble sugar content but lower malonaldehyde accumulation. A transcriptome study showed that cell wall biogenesis-related pathways were most significantly enriched in SATR relative to 93-11 upon SSAS. Furthermore, higher induction of gene expression in the cell wall matrix polysaccharide biosynthesis pathway, coupled with higher accumulations of hemicellulose and pectin as well as measurable physio-biochemical adaptive responses, may explain the strong SSAS tolerance in SATR. We mapped SSAS tolerance to five genomic regions in which 35 genes were candidates potentially governing SSAS tolerance. The 1,4-ß-D-xylan synthase gene OsCSLD4 in hemicellulose biosynthesis pathway was investigated in details. The OsCSLD4 function-disrupted mutant displayed reduced SSAS tolerance, biomass and grain yield, whereas the OsCSLD4 overexpression lines exhibited increased SSAS tolerance. Collectively, this study not only reveals the potential role of cell wall matrix polysaccharides in mediating SSAS tolerance, but also highlights applicable value of OsCSLD4 and the large-scale screening system in developing SSAS-tolerant rice.


Assuntos
Oryza , Oryza/metabolismo , Álcalis/metabolismo , Tolerância ao Sal/genética , Parede Celular/metabolismo , Polissacarídeos/metabolismo , Cloreto de Sódio/metabolismo
4.
Cell Rep ; 36(2): 109384, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260941

RESUMO

The chloroplast is the main organelle for stress-induced production of reactive oxygen species (ROS). However, how chloroplastic ROS homeostasis is maintained under salt stress is largely unknown. We show that EGY3, a gene encoding a chloroplast-localized protein, is induced by salt and oxidative stresses. The loss of EGY3 function causes stress hypersensitivity while EGY3 overexpression increases the tolerance to both salt and chloroplastic oxidative stresses. EGY3 interacts with chloroplastic Cu/Zn-SOD2 (CSD2) and promotes CSD2 stability under stress conditions. In egy3-1 mutant plants, the stress-induced CSD2 degradation limits H2O2 production in chloroplasts and impairs H2O2-mediated retrograde signaling, as indicated by the decreased expression of retrograde-signal-responsive genes required for stress tolerance. Both exogenous application of H2O2 (or APX inhibitor) and CSD2 overexpression can rescue the salt-stress hypersensitivity of egy3-1 mutants. Our findings reveal that EGY3 enhances the tolerance to salt stress by promoting the CSD2 stability and H2O2-mediated chloroplastic retrograde signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Homeostase , Espécies Reativas de Oxigênio , Estresse Salino , Transdução de Sinais , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Modelos Biológicos , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo
5.
Poult Sci ; 99(11): 5697-5706, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33142487

RESUMO

Enormous quantities of data are generated through social and online media in the era of Web 2.0. Understanding consumer perceptions or demand efficiently and cost effectively remains a focus for economists, retailer/consumer sciences, and production industries. Most of the efforts to understand demand for food products rely on reports of past market performance along with survey data. Given the movement of content-generation online to lay users via social media, the potential to capture market-influencing shifts in sentiment exists in online data. This analysis presents a novel approach to studying consumer perceptions of production system attributes using eggs and laying hen housing, which have received significant attention in recent years. The housing systems cage-free and free-range had the greatest number of online hits in the searches conducted, compared with the other laying hen housing types. Less online discussion surrounded enriched cages, which were found by other methods/researchers to meet many key consumer preferences. These results, in conjunction with insights into net sentiment and words associated with different laying hen housing in online and social media, exemplify how social media listening may complement traditional methods to inform decision-makers regarding agribusiness marketing, food systems, management, and regulation. Employing web-derived data for decision-making within agrifood firms offers the opportunity for actionable insights tailored to individual businesses or products.


Assuntos
Bem-Estar do Animal , Galinhas , Abrigo para Animais , Internet , Percepção , Mídias Sociais , Criação de Animais Domésticos/estatística & dados numéricos , Bem-Estar do Animal/estatística & dados numéricos , Animais , Participação da Comunidade/estatística & dados numéricos , Ovos , Feminino , Abrigo para Animais/normas , Abrigo para Animais/estatística & dados numéricos , Humanos
6.
Rice (N Y) ; 13(1): 73, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33063229

RESUMO

BACKGROUND: Grain shape is a critical agronomic trait affecting grain yield and quality. Exploration and functional characterization of grain shape-related genes will facilitate rice breeding for higher quality and yield. RESULTS: Here, we characterized a recessive mutant named Oat-like rice for its unique grain shape which highly resembles oat grains. The Oat-like rice displayed abnormal floral organs, an open hull formed by remarkably elongated leafy lemmas and paleae, occasionally formed conjugated twin brown rice, an aberrant grain shape and a low seed setting rate. By map-based cloning, we discovered that Oat-like rice harbors a novel allele of OsMADS1 gene (OsMADS1Olr), which has a spontaneous point mutation that causes the substitution of an amino acid that is highly conserved in the MADS-box domain of the MADS-box family. Further linkage analysis indicated that the point mutation in the OsMADS1Olr is associated with Oat-like rice phenotype, and expression analysis of the OsMADS1 by qRT-PCR and GUS staining also indicated that it is highly expressed in flower organs as well as in the early stages of grain development. Furthermore, OsMADS1Olr-overexpressing plants showed similar phenotypes of Oat-like rice in grain shape, possibly due to the dominant negative effect. And OsMADS1-RNAi plants also displayed grain phenotypes like Oat-like rice. These results suggested that OsMADS1Olr is responsible for the Oat-like rice phenotype including aberrant grain shape. Moreover, the expression levels of representative genes related to grain shape regulation were apparently altered in Oat-like rice, OsMADS1Olr-overexpressing and OsMADS1-RNAi transgenic plants. Finally, compared with Oat-like rice, OsMADS1Olr-overexpressing and OsMADS1-RNAi plants, mild phenotype of seed-specific OsMADS1-RNAi transgenic plants indicated that OsMADS1 may has has a direct regulation role in grain development and the grain phenotypes of Oat-like rice, OsMADS1Olr-overexpressing and OsMADS1-RNAi plants are majorly caused by the abnormal lemma and palea development. CONCLUSIONS: Altogether, our results showed that grain shape and a low seed setting rate of the notable 'Oat-like rice' are caused by a spontaneous point mutation in the novel allele OsMADS1Olr. Furthermore, our findings suggested that OsMADS1 mediates grain shape possibly by affecting the expression of representative genes related to grain shape regulation. Thus, this study not only revealed that OsMADS1 plays a vital role in regulating grain shape of rice but also highlighted the importance and value of OsMADS1 to improve the quality and yield of rice by molecular breeding.

7.
Rice (N Y) ; 13(1): 30, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32488648

RESUMO

BACKGROUND: Light provides the energy for photosynthesis and determines plant morphogenesis and development. Low light compromises photosynthetic efficiency and leads to crop yield loss. It remains unknown how rice responds to low light stress at a proteomic level. RESULTS: In this study, the quantitative proteomic analysis with isobaric tags for relative and absolute quantitation (iTRAQ) was used and 1221 differentially expressed proteins (DEPs) were identified from wild type rice plants grown in control or low light condition (17% light intensity of control), respectively. Bioinformatic analysis of DEPs indicated low light remarkably affects the abundance of chloroplastic proteins. Specifically, the proteins involved in carbon fixation (Calvin cycle), electron transport, and ATPase complex are severely downregulated under low light. Furthermore, overexpression of the downregulated gene encoding rice ß subunit of glyceraldehyde-3-phosphate dehydrogenase (OsGAPB), an enzyme in Calvin cycle, significantly increased the CO2 assimilation rate, chlorophyll content and fresh weight under low light conditions but have no obvious effect on rice growth and development under control light. CONCLUSION: Our results revealed that low light stress on vegetative stage of rice inhibits photosynthesis possibly by decreasing the photosynthetic proteins and OsGAPB gene is a good candidate for manipulating rice tolerance to low light stress.

8.
Plant Mol Biol ; 96(3): 231, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29356930

RESUMO

Due to an unfortunate turn of events, the first name of the fifth author appeared incorrectly in the original publication and should have read Guangbing. The correct representation of the authors' names and their affiliation is listed here and should be treated as definitive.

9.
Plant Mol Biol ; 96(3): 217-229, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29177640

RESUMO

KEY MESSAGE: 1599 novel circRNAs and 1583 heat stress-specific circRNAs were identified in Arabidopsis. Heat stress enhanced accumulation of circRNAs remarkably. Heat stress altered the sizes of circRNAs, numbers of circularized exons and alterative circularization events. A putative circRNA-mediated ceRNA networks under heat stress was established. Heat stress retards plant growth and destabilizes crop yield. The noncoding RNAs were demonstrated to be involved in plant response to heat stress. As a newly-characterized class of noncoding RNAs, circular RNAs (circRNAs) play important roles in transcriptional and post-transcriptional regulation. A few recent investigations indicated that plant circRNAs were differentially expressed under abiotic stress. However, little is known about how heat stress mediates biogenesis of circRNAs in plants. Here, we uncovered 1599 previously-unknown circRNAs and 1583 heat-specific circRNAs, by RNA-sequencing and bioinformatic analysis. Our results indicated that much more circRNAs were expressed under heat stress than in control condition. Besides, heat stress also increased the length of circRNAs, the quantity of circularized exons, and alternative circularization events. Moreover, we observed a positive correlation between expression patterns of some circRNAs and their parental genes. The prediction of ceRNA (competing endogenous RNA) networks indicated that differentially-expressed circRNAs could influence expression of many important genes, that participate in response to heat stress, hydrogen peroxide, and phytohormone signaling pathways, by interacting with the corresponding microRNAs. Together, our observations indicated that heat stress had great impacts on the biogenesis of circRNAs. Heat-induced circRNAs might participate in plant response to heat stress through the circRNA-mediated ceRNA networks.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica , Genoma de Planta , RNA/genética , Arabidopsis/crescimento & desenvolvimento , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Temperatura Alta , RNA Circular , RNA de Plantas/genética , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA