Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(18): 12636-12644, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38676645

RESUMO

Orbital hybridization to regulate the electronic structures and surface chemisorption properties of transition metals is of great importance for boosting the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs). Herein, we developed a core-shell rambutan-like nanocarbon catalyst (FeAl-RNC) with atomically dispersed Fe-Al atom pairs from metal-organic framework (MOF) material. Experimental and theoretical results demonstrate that the strong p-d orbital hybridization between Al and Fe results in an asymmetric electron distribution with moderate adsorption strength of oxygen intermediates, rendering enhanced intrinsic ORR activity. Additionally, the core-shell rambutan-like structure of FeAl-RNC with abundant micropores and macropores can enhance the density of active sites, stability, and transport pathways in PEMFC. The FeAl-RNC-based PEMFC achieves excellent activity (68.4 mA cm-2 at 0.9 V), high peak power (1.05 W cm-2), and good stability with only 7% current loss after 100 h at 0.7 V under H2-O2 condition.

2.
Curr Neurovasc Res ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38629368

RESUMO

BACKGROUND: Gualou is derived from the fruit of Trichosanthes kirilowii Maxim, while Xiebai from the bulbs of Allium macrostemon Bunge. Gualou and Xiebai herb pair (2:1) is widely used in clinical practice to treat atherosclerotic cardiovascular diseases. However, the mechanism underlying its potential activity on atherosclerosis (AS) has not been fully elucidated. METHODS: The extract of Gualou-Xiebai herb pair (GXE) was prepared from Gualou (80 g) and Xiebai (40 g) by continuous refluxing with 50% ethanol for 2 h at 80°C. In vivo, ApoE-/- mice were fed a high-fat diet (HFD) for 10 weeks to induce an AS model, and then the mice were treated with GXE (3, 6, 12 g/kg) or atorvastatin (10 mg/kg) via oral gavage. Besides, RAW264.7 macrophages were stimulated by ox-LDL to establish a foam cell model in vitro. RESULTS: GXE suppressed plaque formation, regulated plasma lipids, and promoted liver lipid clearance in AS mice. In addition, 0.5, 1, and 2 mg/mL GXE significantly reduced the TC and FC levels in ox-LDL (50 µg/mL)-stimulated foam cells. GXE increased cholesterol efflux from the foam cells to ApoA-1 and HDL, and enhanced the protein expressions of ABCA1, ABCG1, and SR-BI, which were reversed by the PPARγ inhibitor. Meanwhile, GXE increased the LCAT levels, decreased the lipid levels and increased the TBA levels in the liver of AS mice. Molecular docking indicated that some compounds in GXE showed favorable binding energy with PPARγ, LCAT and CYP7A1 proteins, especially apigenin-7-O-ß-D-glucoside and quercetin. CONCLUSION: In summary, our results suggested that GXE improved lipid metabolism disorders by enhancing RCT, providing a scientific basis for the clinical use of GXE in AS treatment.

3.
Angew Chem Int Ed Engl ; 63(22): e202404015, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38530039

RESUMO

Single atomic catalysts (SACs) offer a superior platform for studying the structure-activity relationships during electrocatalytic CO2 reduction reaction (CO2RR). Yet challenges still exist to obtain well-defined and novel site configuration owing to the uncertainty of functional framework-derived SACs through calcination. Herein, a novel Bi-N2O2 site supported on the (1 1 0) plane of hydrogen-bonded organic framework (HOF) is reported directly for CO2RR. In flow cell, the target catalyst Bi1-HOF maintains a faradaic efficiency (FE) HCOOH of over 90 % at a wide potential window of 1.4 V. The corresponding partial current density ranges from 113.3 to 747.0 mA cm-2. And, Bi1-HOF exhibits a long-term stability of over 30 h under a successive potential-step test with a current density of 100-400 mA cm-2. Density function theory (DFT) calculations illustrate that the novel Bi-N2O2 site supported on the (1 1 0) plane of HOF effectively induces the oriented electron transfer from Bi center to CO2 molecule, reaching an enhanced CO2 activation and reduction. Besides, this study offers a versatile method to reach series of M-N2O2 sites with regulable metal centers via the same intercalation mechanism, broadening the platform for studying the structure-activity relationships during CO2RR.

4.
Biochem Biophys Res Commun ; 708: 149788, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38518720

RESUMO

Atherosclerosis (AS) is the underlying cause of many severe vascular diseases and is primarily characterized by abnormal lipid metabolism. Paeonol (Pae), a bioactive compound derived from Paeonia Suffruticosa Andr., is recognized for its significant role in reducing lipid accumulation. Our research objective is to explore the link between lipid buildup in foam cells originating from macrophages and the process of ferroptosis, and explore the effect and mechanism of Pae on inhibiting AS by regulating ferroptosis. In our animal model, ApoE-deficient mice, which were provided with a high-fat regimen to provoke atherosclerosis, were administered Pae. The treatment was benchmarked against simvastatin and ferrostatin-1. The results showed that Pae significantly reduced aortic ferroptosis and lipid accumulation in the mice. In vitro experiments further demonstrated that Pae could decrease lipid accumulation in foam cells induced by oxidized low-density lipoprotein (LDL) and challenged with the ferroptosis inducer erastin. Crucially, the protective effect of Pae against lipid accumulation was dependent on the SIRT1/NRF2/GPX4 pathway, as SIRT1 knockdown abolished this effect. Our findings suggest that Pae may offer a novel therapeutic approach for AS by inhibiting lipid accumulation through the suppression of ferroptosis, mediated by the SIRT1/NRF2/GPX4 pathway. Such knowledge has the potential to inform the creation of novel therapeutic strategies aimed at regulating ferroptosis within the context of atherosclerosis.


Assuntos
Acetofenonas , Aterosclerose , Ferroptose , Animais , Camundongos , Células Espumosas , Fator 2 Relacionado a NF-E2 , Sirtuína 1 , Macrófagos , Aterosclerose/tratamento farmacológico , Transdução de Sinais
5.
Phytomedicine ; 126: 155447, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394732

RESUMO

BACKGROUD: High comorbidity rates have been reported in patients with atherosclerosis and osteoporosis, posing a serious risk to the health and well-being of elderly patients. To improve and update clinical practice regarding the joint treatment of these two diseases, the common mechanisms of atherosclerosis and osteoporosis need to be clarified. MicroRNAs (miRNAs), are importance molecules in the pathogenesis of human diseases, including in cardiovascular and orthopedic fields. They have garnered interest as potential targets for novel therapeutic strategies. However, the key miRNAs involved in atherosclerosis and osteoporosis and their precise regulation mechanisms remain unknown. Paeonol (Pae), an active ingredient in Cortex Moutan, has shown promising results in improving both lipid and bone metabolic abnormalities. However, it is uncertain whether this agent can exert a cotherapeutic effect on atherosclerosis and osteoporosis. OBJECTIVE: This study aimed to screen important shared miRNAs in atherosclerotic and osteoporotic complications, and explore the mechanism of the protective effects of Pae against atherosclerosis and osteoporosis in high-fat diet (HFD)-fed ApoE-/- mice. METHODS: An experimental atherosclerosis and osteoporosis model was established in 40-week-old HFD ApoE-/- mice. Various techniques such as Oil Red O staining, HE staining and micro-CT were used to confirm the co-occurrence of these two diseases and efficacy of Pae in addition to the associated biochemical changes. Bioinformatics was used to screen key miRNAs in the atherosclerosis and osteoporosis model, and gene involvement was assessed through serum analyses, qRT-PCR, and western blot. To investigate the effect of Pae on the modulation of the miR let-7g/HMGA2/CEBPß pathway, Raw 264.7 cells were cocultured with bone marrow mesenchymal stem cells (BMSCs) and treated with an miR let-7g mimic/inhibitor. RESULTS: miR let-7g identified using bioinformatics was assessed to evaluate its participation in atherosclerosis-osteoporosis. Experimental analysis showed reduced miR let-7g levels in the atherosclerosis-osteoporosis mice model. Moreover, miR let-7g was required for BMSC - Raw 264.7 cell crosstalk, thereby promoting foam cell formation and adipocyte differentiation. Treatment with Pae significantly reduced plaque accumulation and foam cell number in the aorta while increasing bone density and improving trabecular bone microarchitecture in HFD ApoE-/- mice. Pae also increased the level of miR let-7g in the bloodstream of model mice. In vitro studies, Pae enhanced miR let-7g expression in BMSCs, thereby suppressing the HMGA2/CEBPß pathway to prevent the formation of foam cells and differentiation of adipocytes induced by oxidized low-density lipoprotein (ox-LDL). CONCLUSION: The study results suggested that miR let-7g participates in atherosclerosis -osteoporosis regulation and that Pae acts as a potential therapeutic agent for preventing atherosclerosis-osteoporosis through regulatory effects on the miR let-7g/HMGA2/CEBPß pathway to hinder foam cell formation and adipocyte differentiation.


Assuntos
Acetofenonas , Aterosclerose , MicroRNAs , Osteoporose , Humanos , Animais , Camundongos , Idoso , Células Espumosas , MicroRNAs/genética , MicroRNAs/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Diferenciação Celular , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Apolipoproteínas E/genética
6.
Molecules ; 29(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38202844

RESUMO

Atherosclerosis is a chronic inflammatory disease leading to various vascular diseases. Vascular smooth muscle cell (VSMC) senescence promotes atherosclerotic inflammation and the formation of plaque necrosis core, in part through telomere damage mediated by a high-fat diet. Our previous research found that paeonol, a potential anti-inflammatory agent extracted from Cortex Moutan, could significantly improve VSMCs dysfunction. However, the impact of paeonol on the senescence of VSMCs remains unexplored. This study presents the protective effects of paeonol on VSMCs senescence, and its potential activity in inhibiting the progression of atherosclerosis in vivo and in vitro. Sirtuin 1 (SIRT1) is a nuclear deacetylase involved in cell proliferation, senescence, telomere damage, and inflammation. Here, SIRT1 was identified as a potential target of paeonol having anti-senescence and anti-atherosclerosis activity. Mechanistic studies revealed that paeonol binds directly to SIRT1 and then activates the SIRT1/P53/TRF2 pathway to inhibit VSMCs senescence. Our results suggested that SIRT1-mediated VSMCs senescence is a promising druggable target for atherosclerosis, and that pharmacological modulation of the SIRT1/P53/TRF2 signaling pathway by paeonol is of potential benefit for patients with atherosclerosis.


Assuntos
Acetofenonas , Aterosclerose , Sirtuínas , Humanos , Sirtuína 1 , Músculo Liso Vascular , Proteína Supressora de Tumor p53 , Aterosclerose/tratamento farmacológico , Inflamação , Transdução de Sinais
7.
Biomed Pharmacother ; 168: 115659, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864896

RESUMO

The anti-tumoral effects of metformin have been widely studied in several types of cancer, including thyroid cancer; however, the underlying molecular mechanisms remain poorly understood. As an oral hypoglycemic drug, metformin facilitates glucose catabolism and disrupts metabolic homeostasis. Metabolic reprogramming, particularly cellular glucose metabolism, is an important characteristic of malignant tumors. This study aimed to explore the therapeutic effects of metformin in thyroid cancer and the underlying metabolic mechanism. In the present study, it was shown that metformin reduced cell viability, invasion, migration, and EMT, and induced apoptosis and cell cycle G1 phase arrest in thyroid cancer. Transcriptome analysis demonstrated that the differentially expressed genes induced by metformin were involved in several signaling pathways including apoptosis singling pathways, TGF-ß signaling, and cell cycle regulation in human thyroid cancer cell lines. In addition, the helicase activity of the CDC45-MCM2-7-GINS complex and DNA replication related genes such as RPA2, RAD51, and PCNA were downregulated in metformin-treated thyroid cancer cells. Moreover, metabolomics analysis showed that metformin-induced significant alterations in metabolic pathways such as glutathione metabolism and polyamine synthesis. Integrative analysis of transcriptomes and metabolomics revealed that metformin suppressed glycolysis by downregulating the key glycolytic enzymes LDHA and PKM2 and upregulating IDH1 expression in thyroid cancer. Furthermore, the anti-tumor role of metformin in thyroid cancer in vivo was shown. Together these results show that metformin plays an anti-tumor role by inhibiting glycolysis and restraining DNA replication in thyroid cancer.


Assuntos
Metformina , Neoplasias da Glândula Tireoide , Humanos , Metformina/farmacologia , Transcriptoma , Linhagem Celular Tumoral , Glicólise , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Perfilação da Expressão Gênica , Replicação do DNA , Proliferação de Células
8.
Chin J Nat Med ; 21(10): 759-774, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37879794

RESUMO

Gut microbiota dysbiosis is an avenue for the promotion of atherosclerosis (AS) and this effect is mediated partly via the circulating microbial metabolites. More microbial metabolites related to AS vascular inflammation, and the mechanisms involved need to be clarified urgently. Paeonol (Pae) is an active compound isolated from Paeonia suffruticoas Andr. with anti-AS inflammation effect. However, considering the low oral bioavailability of Pae, it is worth exploring the mechanism by which Pae reduces the harmful metabolites of the gut microbiota to alleviate AS. In this study, ApoE-/- mice were fed a high-fat diet (HFD) to establish an AS model. AS mice were administrated with Pae (200 or 400 mg·kg-1) by oral gavage and fecal microbiota transplantation (FMT) was conducted. 16S rDNA sequencing was performed to investigate the composition of the gut microbiota, while metabolomics analysis was used to identify the metabolites in serum and cecal contents. The results indicated that Pae significantly improved AS by regulating gut microbiota composition and microbiota metabolic profile in AS mice. We also identified α-hydroxyisobutyric acid (HIBA) as a harmful microbial metabolite reduced by Pae. HIBA supplementation in drinking water promoted AS inflammation in AS mice. Furthermore, vascular endothelial cells (VECs) were cultured and stimulated by HIBA. We verified that HIBA stimulation increased intracellular ROS levels, thereby inducing VEC inflammation via the TXNIP/NLRP3 pathway. In sum, Pae reduces the production of the microbial metabolite HIBA, thus alleviating the ROS/TXNIP/NLRP3 pathway-mediated endothelial inflammation in AS. Our study innovatively confirms the mechanism by which Pae reduces the harmful metabolites of gut microbiota to alleviate AS and proposes HIBA as a potential biomarker for AS clinical judgment.


Assuntos
Aterosclerose , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Aterosclerose/tratamento farmacológico , Dieta Hiperlipídica , Células Endoteliais , Inflamação/tratamento farmacológico , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Espécies Reativas de Oxigênio
9.
Angew Chem Int Ed Engl ; 62(46): e202312644, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37699862

RESUMO

Developing highly efficient and stable hydrogen production catalysts for electrochemical water splitting (EWS) at industrial current densities remains a great challenge. Herein, we proposed a heterostructure-induced-strategy to optimize the metal-support interaction (MSI) and the EWS activity of Ru-Ni3 N/NiO. Density functional theory (DFT) calculations firstly predicted that the Ni3 N/NiO-heterostructures can improve the structural stability, electronic distributions, and orbital coupling of Ru-Ni3 N/NiO compared to Ru-Ni3 N and Ru-NiO, which accordingly decreases energy barriers and increases the electroactivity for EWS. As a proof-of-concept, the Ru-Ni3 N/NiO catalyst with a 2D Ni3 N/NiO-heterostructures nanosheet array, uniformly dispersed Ru nanoparticles, and strong MSI, was successfully constructed in the experiment, which exhibited excellent HER and OER activity with overpotentials of 190 mV and 385 mV at 1000 mA cm-2 , respectively. Furthermore, the Ru-Ni3 N/NiO-based EWS device can realize an industrial current density (1000 mA cm-2 ) at 1.74 V and 1.80 V under alkaline pure water and seawater conditions, respectively. Additionally, it also achieves a high durability of 1000 h (@ 500 mA cm-2 ) in alkaline pure water.

10.
Cell Signal ; 109: 110792, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37406787

RESUMO

OBJECTIVES: miR-142-3P is a tumor suppressor in various malignant cancers. However, the function of miR-142-3P in papillary thyroid carcinoma (PTC) remains to be elucidated. The aim of this study was to explore the function and mechanism of miR-142-3P in PTC. METHODS: Real Time Quantitative PCR (RT-qPCR) was used to assess the expression of miR-142-3P and Fibronectin 1 (FN1) in PTC. The correlation between FN1 and miR-142-3P expression was analyzed by Spearman's correlation analysis. Cell Counting Kit 8 (CCK8), 5-ethynyl-2'-deoxyuridine (EDU) assay, cell migration and invasion assay and wound healing measures evaluated the effect of miR-142-3P and FN1 on cell proliferation, migration and invasion. Dural Luciferase reported gene assay evaluated the interaction between miR-142-3P and 3' untranslated region (UTR) of FN1. The Epithelial-Mesenchymal-Transition (EMT) and apoptosis related marker genes were measured using western blot analysis (WB). RESULTS: miR-142-3P was significantly decreased in both PTC specimens and relevant cell lines. Functionally, miR-142-3P inhibited cell proliferation, migration, invasion and EMT, and induced the cell apoptosis in PTC. In addition, miR-142-3P bound directly with 3' UTR of FN1 and negatively regulated the expression of FN1 in PTC. FN1 expression is elevated in PTC, and its aberrant high correlated with declines in recurrence-free survival (RFS). Moreover, FN1 promoted cell proliferation, migration, invasion and EMT, induced cell apoptosis in PTC cells. Depletion of FN1 rescues the effect of miR-142-3P inhibitor on cell proliferation, invasion, apoptosis and EMT via inactivating Focal Adhesion Kinase (FAK)/Extracellular Signal-Regulated Kinase (ERK) / Phosphoinostide 3-kinase (P13K) signaling. CONCLUSION: miR-142-3P suppressed cell proliferation, migration, invasion and EMT through modulating FN1/FAK/ERK/PI3K signaling in PTC, suggesting it as a potential therapeutic target for PTC.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/metabolismo , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Glândula Tireoide/patologia , Fibronectinas/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
11.
Br J Cancer ; 129(7): 1041-1049, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37452117

RESUMO

Tumour immunotherapy has achieved remarkable clinical success in many different types of cancer in the past two decades. The outcome of immune checkpoint inhibitors in cancer patients has been linked to the quality and magnitude of T cell, NK cell, and more recently, B cell within the tumour microenvironment, suggesting that the immune landscape of a tumour is highly connected to patient response and prognosis. It is critical to understanding tumour immune microenvironments for identifying immune modifiers of cancer progression and developing cancer immunotherapies. The infiltration of solid tumours by immune cells with anti-tumour activity is both a strong prognostic factor and a therapeutic goal. Recent approaches and applications of new technologies, especially single-cell mRNA analysis in dissecting tumour microenvironments have brought important insights into the biology of tumour-infiltrating immune cells, revealed a remarkable degree of cellular heterogeneity and distinct patterns of immune response. In this review, we will discuss recent advances in the understanding of tumour infiltrated lymphocytes, their prognostic benefit, and predictive value for immunotherapy.

12.
Sci Total Environ ; 899: 165655, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478931

RESUMO

Understanding the mechanism of trophic transfer of heavy metal through the aquatic food web is critical to ecological exposure risk assessments in mangrove ecosystems. Zhanjiang Mangrove National Nature Reserve (ZMNNR) is the largest and biologically richest mangrove reserve in China, but has been exposed to heavy metal pollutants caused by the progressive industrialization and urbanization. We collected a variety of aquatic consumers, and primary producers, as well as sediments from the ZMNNR and analyzed them for heavy metal (Cd, Cr, Cu, Ni, Pb and Zn) concentrations, and for both δ13C and δ15N values to establish the trophic levels. The trophic magnification factors (TMF) of Cd, Cu and Zn are 0.19 (p < 0.01), 0.07 (p < 0.01) and 0.33 (p < 0.05), respectively, indicating significant biodilution in a simplified food web composed of bivalves, crustaceans and fish. There are also potential tendencies of biodilution for Cr, Ni and Pb. Comparison of heavy metals in representative fish and shrimp in the ZMNNR with those in worldwide mangroves indicate a low risk level for aquatic consumers in our ecosystem. Quantitative source tracking is conducted based on principal component analysis and cluster analysis, which indicate that Cr, Ni and Pb are mainly originated from natural geological processes, Cu and Zn from shrimp farming and agriculture activities, and Cd from the deposition of aerosol released by regional metal smelting industry.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Cadeia Alimentar , Ecossistema , Monitoramento Ambiental , Cádmio/análise , Chumbo/análise , Poluentes Químicos da Água/análise , Metais Pesados/análise , Peixes , Crustáceos , China , Medição de Risco , Sedimentos Geológicos
13.
Eur J Mass Spectrom (Chichester) ; 29(3): 159-169, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37338428

RESUMO

The objective of this study is to gain insights into the underlying metabolic transformations that occurred during the whole progression of cecal ligation and puncture (CLP)-induced sepsis, thus providing new targets for its treatment. High-performance liquid chromatography of quadrupole time of flight mass spectrometry (HPLC-Q-TOF-MS/MS) combined with multivariate statistical techniques was used to detect the s in serum from septic mice. Fifty male mice were divided into two groups, including the sham group (n = 7) and the CLP-induced sepsis group (n = 43). Animals were sacrificed at 1, 3, 5, and 7 days post-CLP and then serum were collected for metabolomic analysis. Multivariate regression analysis was carried out through MetaboAnalyst 5.0, including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), to identify the s and screen out the related differential metabolites. Besides, the KEGG pathway analysis was used to analyze the related metabolic pathways in which the identified metabolites were involved. Based on the fold change (FC > 2.0 or <0.5), variable important in projection (VIP > 1.2), and P value (P < 0.05), we found 26, 17, 21, and 17 metabolites in septic mice at 1, 3, 5, and 7 days post-CLP, respectively, compared with that of the sham group. The PCA and PLS-DA pattern recognition showed a cluster-type distribution between the sham group and the CLP group. Dysregulated amino acid metabolism, as well as disturbed nucleotide metabolism, is observed. Several important metabolic pathways were identified between the sham group and the CLP group. Among them, phenylalanine metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis showed striking at day 1 post-CLP. At day 3, phenylalanine, tyrosine, and tryptophan biosynthesis changed significantly. However, as the disease process, only pyrimidine metabolism showed the most significant alternation, compared to the sham group. Several differential metabolites were identified in the CLP group compared with that of the sham group and they were presented with dynamic alternation at different time points post-CLP, indicating metabolic disturbance occurred throughout the whole sepsis progression.


Assuntos
Sepse , Espectrometria de Massas em Tandem , Camundongos , Masculino , Animais , Cromatografia Líquida de Alta Pressão , Triptofano , Metabolômica/métodos , Sepse/metabolismo , Tirosina , Fenilalanina , Biomarcadores
14.
Toxicon ; 230: 107153, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37178797

RESUMO

Amatoxin poisoning leads to over 90% of deaths in mushroom poisoning. The objective of present study was to identify the potential metabolic biomarkers for early diagnosis of amatoxin poisoning. Serum samples were collected from 61 patients with amatoxin poisoning and 61 healthy controls. An untargeted metabolomics analysis was performed using the ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS). Multivariate statistical analysis revealed that the patients with amatoxin poisoning could be clearly separated from healthy controls on the basis of their metabolic fingerprints. There were 33 differential metabolites including 15 metabolites up-regulated metabolites and 18 down-regulated metabolites in patients with amatoxin poisoning compared to healthy controls. These metabolites mainly enriched in the lipid metabolism and amino acid metabolism pathways, such as Glycerophospholipid metabolism, Sphingolipid metabolism, Phenylalanine tyrosine and typtophan biosynthesis, Tyrosine metabolism, Arginine and proline metabolism, which may serve important roles in the amatoxin poisoning. Among the differential metabolites, a total of 8 significant metabolic markers were identified for discriminating patients with amatoxin poisoning from healthy controls, including Glycochenodeoxycholate-3-sulfate (GCDCA-S), 11-Oxo-androsterone glucuronide, Neomenthol-glucuronide, Dehydroisoandrosterone 3-glucuronide, Glucose 6-phosphate (G6P), Lanthionine ketimine, Glycerophosphocholine (GPC) and Nicotinamide ribotide, which achieved satisfactory diagnostic accuracy (AUC>0.8) in both discovery and validation cohorts. Strikingly, the Pearson's correlation analysis indicated that 11-Oxo-androsterone glucuronide, G6P and GCDCA-S were positively correlated with the liver injury induced by amatoxin poisoning. The findings of the current study may provide insight into the pathological mechanism of amatoxin poisoning and screened out the reliable metabolic biomarkers to contribute the clinical early diagnosis of amatoxin poisoning.


Assuntos
Glucuronídeos , Espectrometria de Massas em Tandem , Humanos , Metabolômica/métodos , Cromatografia Líquida de Alta Pressão/métodos , Biomarcadores , Tirosina
15.
Curr Neurovasc Res ; 20(1): 76-84, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733198

RESUMO

BACKGROUND: Paeonol (Pae), the main active compound of the root of Paeonia albiflora, is efficacious in treating atherosclerosis (AS). Endothelial dysfunction is throughout the pathological progression of AS. It is expected that inhibition of Endothelial-to-mesenchymal transition (EndMT) will be a key target for AS treatment. OBJECTIVE: In this study, we investigated the molecular mechanism of the regulatory effect of Pae on EndMT in human umbilical vein endothelial cells (HUVECs). METHODS: Cell cytotoxicity, proliferation, and migration were detected by CCK-8, the wound healing assay, and EdU staining, respectively. The protein expressions were measured by Western blot or immunofluorescence staining. Immunofluorescence staining was performed to indicate endothelial cells undergoing EndMT in ApoE-/- mice. In vitro TGF-ß1-induced EndMT assays were performed in HUVECs and the effect of Pae was explored. RESULTS: We demonstrated that Pae could improve induced TGF-ß1-EndMT in vivo and in vitro. Mechanism study revealed that Pae directly bonds to the activin-like kinase 5 (ALK5, also known as TGFß type I receptor), inhibited downstream Smad2/3 phosphorylation, and thus alleviated EndMT. Notably, overexpression of ALK5 significantly reversed the inhibitory effect of Pae on EndMT in HUVECs. CONCLUSION: Our results indicate that ALK5 is a promising druggable target for AS, and pharmacological regulation of ALK5-Smad2/3 signaling pathway with small-molecule holds great potential to benefit AS patients.


Assuntos
Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta1 , Animais , Humanos , Camundongos , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/farmacologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-36529071

RESUMO

Atherosclerosis (AS) is a metabolic disorder commonly correlated with a high-fat diet (HFD). There are many endogenous metabolic changes associated with AS development. Gualou-Xiebai (GLXB) is a traditional Chinese medicine herb pair that has been used to treat AS. However, the mechanism of GLXB herb pair on the process of AS is still essentially unknown. In this study, aortic histopathological examination and biochemical analyses were used to validate the anti-atherosclerotic effects of GLXB herb pair on ApoE-/- mice during the disease course of AS. The mechanism of GLXB herb pair were performed by metabolomics approach based on ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). As a result, GLXB herb pair has protective effects on AS lesion development and improves blood lipid levels in ApoE-/- mice. A total of 34, 39, and 49 metabolites were found to be profoundly altered in the 9-week, 14-week, and 19-week model groups compared with the corresponding control groups. Among them, 16, 18, and 18 metabolites showed a trend toward normal levels after pharmacological intervention. Metabolic pathway analysis found that GLXB herb pair mainly affects glycerophospholipid metabolism, pentose and glucuronate interconversions in 9 weeks; linoleic acid metabolism, cysteine and methionine metabolism, and arachidonic acid metabolism in 14 weeks; arachidonic acid metabolism and pentose and glucuronate interconversions in 19 weeks. The results demonstrated that GLXB herb pair mainly played a therapeutic role by regulating glycerophospholipid metabolism and pentose and glucuronate interconversions in the whole process of AS.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Animais , Camundongos , Apolipoproteínas E , Ácido Araquidônico , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Biomarcadores , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Glicerofosfolipídeos , Metabolômica/métodos , Aorta/efeitos dos fármacos
17.
Nat Prod Res ; 37(3): 375-382, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34587845

RESUMO

A new triterpenoid saponin, 3-O-ß-D-allopyranosyl (1→3)-α-L-rhamnopyranosyl (1→2)-α-L-arabinopyranosyl hederagenin 28-O-α-L-rhamnopyranosyl (1→4)-ß-D-glucopyranosyl (1→6)-ß-D-glucopyranosyl ester (IV), together with six known ones Hederacholichiside F (I), Tanguticoside B (II), Tauroside St-H1 (III), Hederoside H1 (V), Kalopanaxsaponin G (VI), Hederasaponin B (VII) were separated from Clematis tangutica (Maxim.) Korsh. Their cytotoxic activities were evaluated. Saponins IV (new compound) and I showed selective inhibitory activities against HGC-27 with IC50 values of 20.17 and 66.18 µM. Saponin VII exhibited extensive inhibitory action against HGC-27, Hela and SK-OV-3 with IC50 values of 16.47-71.36 µM. Saponin III showed selective inhibitory activity against SK-OV-3 with the IC50 value of 48.70 µM. All isolated saponins were inactive (IC50 >150 µM) to GES-1.


Assuntos
Antineoplásicos , Clematis , Saponinas , Triterpenos , Humanos , Estrutura Molecular , Saponinas/farmacologia , Triterpenos/farmacologia
18.
Cancer Med ; 12(3): 3313-3327, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36028997

RESUMO

INTRODUCTION: Adoptive cellular therapy with tumor-infiltrating lymphocytes (TIL) has demonstrated promising clinical benefits in several solid tumors, but the efficacy of this therapy might be compromised by the "prone-to-exhaustion" phenotype of TIL and poor persistence in vivo. This calls for a robust expansion process to produce a large number of cells for clinical usage while at the same time maintaining favorable anti-tumor function and memory phenotype. Previous studies showed that the PI3K-AKT signaling pathway plays a key role in the regulation of T cell activation, differentiation and memory formation. METHOD: We modulated the PI3K-AKT pathway in TIL isolated from cervical and ovarian cancer by application of AKT or PI3K inhibitors or CRISPR knockout of AKT1 and/or AKT2, and characterized their effects on TIL phenotype and effector function. Mechanistic study was further performed with RNA-seq analysis of AKT1/2 KO TIL in comparison to control TIL. RESULT: The inhibition of either PI3K or AKT led to an increase in the population of effector CD8+ T cells with upregulation of activation markers, elevated CD39- CD69- memory T cells, and significantly enhanced cytotoxicity when cocultured with tumor cell lines and patient-derived tumor samples. Moreover, dual knockout of AKT1 and AKT2 largely phenocopies the functional impact of AKT or PI3K inhibition on TIL. This result was further validated by RNA-seq analysis indicating that AKT1/2 ablation primarily regulates T cell differentiation and function-related programs. CONCLUSION: Modulation of PI3K-AKT signaling represents a promising strategy to enhance TIL stemness and cytotoxicity and improve the clinical outcome of current TIL-based therapy to treat solid tumors.


Assuntos
Linfócitos do Interstício Tumoral , Neoplasias Ovarianas , Humanos , Feminino , Linfócitos do Interstício Tumoral/metabolismo , Imunoterapia Adotiva , Linfócitos T CD8-Positivos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Neoplasias Ovarianas/patologia
19.
Front Genet ; 13: 1029300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338997

RESUMO

Computable models as a fundamental candidate for traditional biological experiments have been applied in inferring lncRNA-disease association (LDA) for many years, without time-consuming and laborious limitations. However, sparsity inherently existing in known heterogeneous bio-data is an obstacle to computable models to improve prediction accuracy further. Therefore, a new computational model composed of multiple mechanisms for lncRNA-disease association (MM-LDA) prediction was proposed, based on the fusion of the graph attention network (GAT) and inductive matrix completion (IMC). MM-LDA has two key steps to improve prediction accuracy: first, a multiple-operator aggregation was designed in the n-heads attention mechanism of the GAT. With this step, features of lncRNA nodes and disease nodes were enhanced. Second, IMC was introduced into the enhanced node features obtained in the first step, and then the LDA network was reconstructed to solve the cold start problem when data deficiency of the entire row or column happened in a known association matrix. Our MM-LDA achieved the following progress: first, using the Adam optimizer that adaptively adjusted the model learning rate could increase the convergent speed and not fall into local optima as well. Second, more excellent predictive ability was achieved against other similar models (with an AUC value of 0.9395 and an AUPR value of 0.8057 obtained from 5-fold cross-validation). Third, a 6.45% lower time cost was consumed against the advanced model GAMCLDA. In short, our MM-LDA achieved a more comprehensive prediction performance in terms of prediction accuracy and time cost.

20.
Foods ; 11(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36230136

RESUMO

We explore the prospect of applying mineral element and stable isotope data in origin tracing Procambarus clarkii to establish an origin tracing system. Microwave digestion−atomic absorption spectrometry and stable isotope ratio mass spectrometry determined the contents of 14 mineral elements (Na, Mg, Al, K, Ca, Mn, Zn, Cu, Fe, Sr, Ba, As, Se and Cd) and the abundances of C and N stable isotopes in the muscle tissue of P. clarkii from Guangdong, Hunan and Hubei regions. The one-way ANOVA and Duncan multiple comparison results revealed Na, Sr, Ba, Cu, Mn, Fe, Al, Se, δ13C and δ15N varied significantly between the three regions (p < 0.05). A systematic clustering analysis revealed the stable isotopes combined with the mineral elements easily distinguished samples into the three different regions. Multivariate statistical analysis allowed us to establish a discriminant model for distinguishing P. clarkii from the three geographical regions. When stable isotopes were combined with mineral elements, the accuracy of the linear discriminant analysis of the samples from Guangdong, Hunan and Hubei were 95%, 95% and 100%, respectively. The initial overall discriminant accuracy was 96.7%, and the cross-validation discriminant accuracy was 93.3%. Principal component analysis identified three main components which were based on eleven major factors, including Cu, Ba, Cd, Mn, δ13C, δ15N, Al and Mg, resulting in a cumulative variance contribution rate of 78.77%. We established a three-dimensional coordinate system using the three principal components to create scatter diagrams with the samples from the three regions in the coordinate system. The results revealed the samples clearly differentiated into the three regions. Therefore, mineral elements combined with stable isotopes can distinguish the regional origin of P. clarkii.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...