Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Heliyon ; 10(9): e29848, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699049

RESUMO

Systemic lupus erythematosus (SLE) is a complex autoimmune disease with multiple etiological factors. Immune disorder contributes to SLE development and is an important clinical manifestation of SLE patients. Immune dysfunction is characterized by abnormal of B cells, T cells, monocyte-macrophages and dendritic cells (DCs), in both quantity and quality. Adenosine is a critical factor for human immune homeostasis, which acts as an immunosuppressive signal and can prevent the hyperactivity of human immune system. Adenosine levels are significant decreased in serum from SLE patients. Adenosine level is regulated by the CD39, CD73 and adenosine deaminase (ADA). CD39/CD73/ADA catalyzed the cascade enzymatic reaction, which contained the adenosine generation and degradation. Adenosine affects the function of various immune cells via bind to the adenosine receptors, which are expressed on the cell surface. This review aims to export the changes of immune cells and adenosine signal pathway in SLE, as well as the effect of adenosine signal pathway in SLE development.

2.
J Virol ; 98(5): e0048324, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38639486

RESUMO

Alphaherpesvirus pseudorabies virus (PRV) causes severe economic losses to the global pig industry and has garnered increasing attention due to its broad host range including humans. PRV has developed a variety of strategies to antagonize host antiviral innate immunity. However, the underlying mechanisms have not been fully elucidated. In our previous work, we demonstrated that non-muscle myosin heavy chain IIA (NMHC-IIA), a multifunctional cytoskeleton protein, attenuates innate immune responses triggered by RNA viruses. In the current study, we reported a previously unrecognized role of NMHC-IIA in counteracting PRV-induced cyclic GMP-AMP synthase (cGAS)-dependent type I interferon (IFN-I) production. Mechanistically, PRV infection led to an elevation of NMHC-IIA, strengthening the interaction between poly (ADP-ribose) polymerase 1 (PARP1) and cGAS. This interaction impeded cGAS recognition of PRV DNA and hindered downstream signaling activation. Conversely, inhibition of NMHC-IIA by Blebbistatin triggered innate immune responses and enhanced resistance to PRV proliferation both in vitro and in vivo. Taken together, our findings unveil that PRV utilizes NMHC-IIA to antagonize host antiviral immune responses via impairing DNA sensing by cGAS. This in-depth understanding of PRV immunosuppression not only provides insights for potential PRV treatment strategies but also highlights NMHC-IIA as a versatile immunosuppressive regulator usurped by both DNA and RNA viruses. Consequently, NMHC-IIA holds promise as a target for the development of broad-spectrum antiviral drugs.IMPORTANCECyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) axis plays a vital role in counteracting alphaherpesvirus infections. Alphaherpesviruses exploit various strategies for antagonizing cGAS-STING-mediated antiviral immune responses. However, limited examples of pseudorabies virus (PRV)-caused immunosuppression have been documented. Our findings reveal a novel role of non-muscle myosin heavy chain IIA (NMHC-IIA) in suppressing PRV-triggered innate immune responses to facilitate viral propagation both in vitro and in vivo. In detail, NMHC-IIA recruits poly (ADP-ribose) polymerase 1 (PARP1) to augment its interaction with cGAS, which impairs cGAS recognition of PRV DNA. Building on our previous demonstration of NMHC-IIA's immunosuppressive role during RNA virus infections, these findings indicate that NMHC-IIA acts as a broad-spectrum suppressor of host antiviral innate immunity in response to both DNA and RNA viruses. Therefore, NMHC-IIA will be a promising target for the development of comprehensive antiviral strategies.


Assuntos
DNA Viral , Herpesvirus Suídeo 1 , Imunidade Inata , Nucleotidiltransferases , Herpesvirus Suídeo 1/imunologia , Animais , Nucleotidiltransferases/metabolismo , DNA Viral/imunologia , Suínos , Humanos , Pseudorraiva/imunologia , Pseudorraiva/virologia , Miosina não Muscular Tipo IIA/metabolismo , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Camundongos , Transdução de Sinais , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Linhagem Celular , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/imunologia , Células HEK293
3.
Redox Biol ; 72: 103145, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583415

RESUMO

Ferroptosis is a nonapoptotic form of regulated cell death that has been reported to play a central role in cardiac ischemia‒reperfusion (I/R) injury. N-acetyltransferase 10 (NAT10) contributes to cardiomyocyte apoptosis by functioning as an RNA ac4c acetyltransferase, but its role in cardiomyocyte ferroptosis during I/R injury has not been determined. This study aimed to elucidate the role of NAT10 in cardiac ferroptosis as well as the underlying mechanism. The mRNA and protein levels of NAT10 were increased in mouse hearts after I/R and in cardiomyocytes that were exposed to hypoxia/reoxygenation. P53 acted as an endogenous activator of NAT10 during I/R in a transcription-dependent manner. Cardiac overexpression of NAT10 caused cardiomyocyte ferroptosis to exacerbate I/R injury, while cardiomyocyte-specific knockout of NAT10 or pharmacological inhibition of NAT10 with Remodelin had the opposite effects. The inhibition of cardiomyocyte ferroptosis by Fer-1 exerted superior cardioprotective effects against the NAT10-induced exacerbation of post-I/R cardiac damage than the inhibition of apoptosis by emricasan. Mechanistically, NAT10 induced the ac4C modification of Mybbp1a, increasing its stability, which in turn activated p53 and subsequently repressed the transcription of the anti-ferroptotic gene SLC7A11. Moreover, knockdown of Mybbp1a partially abolished the detrimental effects of NAT10 overexpression on cardiomyocyte ferroptosis and cardiac I/R injury. Collectively, our study revealed that p53 and NAT10 interdependently cooperate to form a positive feedback loop that promotes cardiomyocyte ferroptosis to exacerbate cardiac I/R injury, suggesting that targeting the NAT10/Mybbp1a/p53 axis may be a novel approach for treating cardiac I/R.


Assuntos
Ferroptose , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Proteína Supressora de Tumor p53 , Ferroptose/genética , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Camundongos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/genética , Acetiltransferases/metabolismo , Acetiltransferases/genética , Retroalimentação Fisiológica , Transdução de Sinais , Modelos Animais de Doenças , Masculino , Humanos , Apoptose
4.
Nano Lett ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598369

RESUMO

Cancer stem cells (CSCs) with hyperactivated signal transducer and activator of transcription 3 (STAT3) are a major driver of hepatocellular carcinoma (HCC). Herein, we report a nanointegrative proteolysis-targeting chimera (PROTAC)-based STAT3 degradation strategy that enables efficient chemical reprogramming of HCC-associated CSCs, which potently inhibits CSC growth while evoking anti-HCC immune responses. The PROTAC prodrug was synthesized by conjugating the STAT3 binding domain (inS3) with a thioketal-caged E3 ligase ligand (VL-TK) via an oligo(ethylene glycol) linker (OEG) with tuned length and flexibility and encapsulating it in cRGD-modified cationic liposomes for CSC-targeted delivery while facilitating their lysosomal escape. The PROTAC prodrugs were activated by the upregulated ROS levels in CSCs and efficiently degraded STAT3 for chemical reprogramming, which would not only impair their stemness features but also remodel the immunosuppressive TME into an immunosupportive state to boost anti-HCC immunity. This strategy provides an approach for improving HCC treatment in clinics.

5.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612430

RESUMO

A variety of neurological and psychiatric disorders have recently been shown to be highly associated with the abnormal development and function of oligodendrocytes (OLs) and interneurons. OLs are the myelin-forming cells in the central nervous system (CNS), while interneurons are important neural types gating the function of excitatory neurons. These two types of cells are of great significance for the establishment and function of neural circuits, and they share similar developmental origins and transcriptional architectures, and interact with each other in multiple ways during development. In this review, we compare the similarities and differences in these two cell types, providing an important reference and further revealing the pathogenesis of related brain disorders.


Assuntos
Interneurônios , Oligodendroglia , Humanos , Bainha de Mielina , Neurônios , Encéfalo
6.
Insects ; 15(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535361

RESUMO

Due to the variability of body coloration and morphological similarity among closely related species, unresolved issues and debates still persist in the taxonomic study of the genus Sycanus from China. In this study, we conducted phylogenetic analyses and species delimitation for Sycanus in China based on a COI DNA barcoding dataset comprising 81 samples. The results revealed that all the samples could be classified into 12 species by integrating molecular analyses with morphological comparison. This paper provides a comprehensive systematic review of the Sycanus species found in China, including descriptions of three new species: S. taiwanensis Zhao & Cai sp. nov., S. flavicorius Li & Cai sp. nov., and S. hainanensis Wang & Cai sp. nov. Furthermore, it is proposed that S. croceovittatus Dohrn, 1859, S. leucomesus Walker, 1873, and S. villicus Stål, 1863, are three synonyms of S. bifidus (Fabricius, 1787); S. bicolor Hsiao, 1979, is a synonym of S. versicolor Dohrn, 1859; and S. hsiaoi Maldonado-Capriles, 1990, is a synonym of S. marginellus Putshkov, 1987. Additionally, brief biological information is provided for two species, S. falleni Stål, 1863, and S. croceus Hsiao, 1979.

7.
Adv Sci (Weinh) ; : e2306498, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38476116

RESUMO

Ca2+ signaling is essential for oligodendrocyte (OL) development and myelin formation. Inositol 1,4,5-trisphosphate receptor type 2 (ITPR2) is an endoplasmic reticulum calcium channel and shows stage-dependent high levels in postmitotic oligodendrocyte precursor cells (OPCs). The role and potential mechanism of ITPR2 in OLs remain unclear. In this study, it is revealed that loss of Itpr2 in OLs disturbs Ca2+ homeostasis and inhibits myelination in adolescent mice. Animals with OL-specific deletion of Itpr2 exhibit anxiety/depressive-like behaviors and manifest with interrupted OPC proliferation, leading to fewer mature OLs in the brain. Detailed transcriptome profiling and signal pathway analysis suggest that MAPK/ERK-CDK6/cyclin D1 axis underlies the interfered cell cycle progression in Itpr2 ablated OPCs. Besides, blocking MAPK/ERK pathway significantly improves the delayed OPC differentiation and myelination in Itpr2 mutant. Notably, the resting [Ca2+ ]i is increased in Itpr2 ablated OPCs, with the elevation of several plasma calcium channels. Antagonists against these plasma calcium channels can normalize the resting [Ca2+ ]i level and enhance lineage progression in Itpr2-ablated OPCs. Together, the findings reveal novel insights for calcium homeostasis in manipulating developmental transition from OPCs to pre-OLs; additionally, the involvement of OLs-originated ITPR2 in depressive behaviors provides new therapeutic strategies to alleviate myelin-associated psychiatric disorders.

8.
Transl Cancer Res ; 13(2): 833-846, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38482406

RESUMO

Background: B7-H3 (CD276) is overexpressed in diverse malignant tumors and plays critical roles in tumorigenesis and metastasis. However, the mechanism of B7-H3 in lung cancer remains unclear. This study aimed to explore the mechanism of interaction between B7-H3 and α-enolase (ENO1) in lung cancer progression. Methods: Tumor Immune Estimation Resource 2.0 (TIMER 2.0) and Gene Expression Profiling Interactive Analysis 2 (GEPIA 2) databases were used to analyze the B7-H3 messenger RNA (mRNA) expression levels in lung cancer. The Kaplan-Meier (KM) plotter was used to analyze the correlation between B7-H3 and prognosis. Immunoprecipitation and glutathione S-transferase (GST) pull-down were used to verify the B7-H3 and ENO1 interaction. Cell counting kit-8 (CCK-8) and wound healing assays were used to investigate the effect of B7-H3 on the lung cancer growth. Results: Based on the public databases, the analysis showed that B7-H3 mRNA expression levels were up-regulated and correlated with patient prognosis in lung cancer. By using B7-H3 gain and off cell model, we concluded that B7-H3 overexpression promoted proliferation and migration of SBC5 cells. Subsequently, we found that both B7-H3 and ENO1 knockdown could inhibit cell proliferation and migration, in the meanwhile, and the phosphorylation levels of PI3K-p85α, and AKT were significantly reduced. Interestingly, we determined that B7-H3 regulated ENO1 activity rather than changing its expression levels. Furthermore, we used an AP-III-a4 to block ENO1 activity in the experiments, which attenuated the roles of B7-H3 not only on phosphorylation levels of those molecules, but also on cell growth and migration. Conclusions: B7-H3 directly interacts with ENO1 in lung cancer cells. B7-H3 can promote proliferation and migration of lung cancer cells by modulating PI3K/AKT pathway via ENO1 activity.

9.
Ecotoxicol Environ Saf ; 273: 116180, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458071

RESUMO

Microplastics (MPs)/nanoplastics (NPs), as a source and vector of pathogenic bacteria, are widely distributed in the natural environments. Here, we investigated the combined effects of polystyrene NPs (PS-NPs) and lipopolysaccharides (LPS) on testicular function in mice for the first time. 24 male mice were randomly assigned into 4 groups, control, PS-NPs, LPS, and PS-NPs + LPS, respectively. Histological alterations of the testes were observed in mice exposed to PS-NPs, LPS or PS-NPs + LPS. Total sperm count, the levels of testosterone in plasma and testes, the expression levels of steroidogenic acute regulatory (StAR) decreased more remarkable in testes of mice treated with PS-NPs and LPS than the treatment with LPS or PS-NPs alone. Compared with PS-NPs treatment, LPS treatment induced more sever inflammatory response in testes of mice. Moreover, PS-NPs combined with LPS treatment increased the expression of these inflammatory factors more significantly than LPS treatment alone. In addition, PS-NPs or LPS treatment induced oxidative stress in testes of mice, but their combined effect is not significantly different from LPS treatment alone. These results suggest that PS-NPs exacerbate LPS-induced testicular dysfunction. Our results provide new evidence for the threats to male reproductive function induced by both NPs and bacterial infection in human health.


Assuntos
Nanopartículas , Testículo , Humanos , Animais , Masculino , Camundongos , Lipopolissacarídeos/toxicidade , Microplásticos , Plásticos , Poliestirenos/toxicidade , Sêmen , Inflamação/induzido quimicamente , Testosterona
10.
Nat Commun ; 15(1): 2167, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461148

RESUMO

Developing highly efficient catalysts is significant for Li-CO2 batteries. However, understanding the exact structure of catalysts during battery operation remains a challenge, which hampers knowledge-driven optimization. Here we use X-ray absorption spectroscopy to probe the reconstruction of CoSx (x = 8/9, 1.097, and 2) pre-catalysts and identify the local geometric ligand environment of cobalt during cycling in the Li-CO2 batteries. We find that different oxidized states after reconstruction are decisive to battery performance. Specifically, complete oxidation on CoS1.097 and Co9S8 leads to electrochemical performance deterioration, while oxidation on CoS2 terminates with Co-S4-O2 motifs, leading to improved activity. Density functional theory calculations show that partial oxidation contributes to charge redistributions on cobalt and thus facilitates the catalytic ability. Together, the spectroscopic and electrochemical results provide valuable insight into the structural evolution during cycling and the structure-activity relationship in the electrocatalyst study of Li-CO2 batteries.

11.
Chem Sci ; 15(5): 1829-1839, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38303939

RESUMO

Developing a comprehensive strategy for imaging various biomarkers (i.e., microRNAs and proteases) in vivo is an exceptionally formidable task. Herein, we have designed a deoxyribonucleic acid-gold nanocluster (DNA-AuNC) nanomachine for detecting tumor-related TK1 mRNA and cathepsin B in living cells and in vivo. The DNA-AuNC nanomachine is constructed using AuNCs and DNA modules that incorporate a three component DNA hybrid (TD) and a single-stranded fuel DNA (FD). Upon being internalized into tumor cells, the TK1 mRNA initiates the DNA-AuNC nanomachine through DNA strand displacement cascades, leading to the amplified self-assembly and the aggregation-enhanced emission of AuNCs for in situ imaging. Furthermore, with the aid of a protease nanomediator consisting of a mediator DNA/peptide complex and AuNCs (DpAuNCs), the DNA-AuNC nanomachine can be triggered by the protease-activated disassembly of the DNA/peptide complex on the nanomediator, resulting in the aggregation of AuNCs for in vivo protease amplified detection. It is worth noting that our study demonstrates the impressive tumor permeability and accumulation capabilities of the DNA-AuNC nanomachines via in situ amplified self-assembly, thereby facilitating prolonged imaging of TK1 mRNA and cathepsin B both in vitro and in vivo. This strategy presents a versatile and biomarker-specific paradigm for disease diagnosis.

12.
Nanotechnology ; 35(13)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37995369

RESUMO

Flexible solid-state zinc-air batteries as a wearable energy storage device with great potential, and their separators, which control ion permeability, inhibit zinc dendrite generation, and regulate catalytic active sites, have been developed as gel electrolyte separators with high retention of electrolyte uptake. However, the gel electrolyte separator still has problems such as poor affinity with the electrolyte and poor ionic conductivity, which limits its further application. In order to further improve the electrolyte absorption, ionic conductivity and mechanical strength of cellulose acetate(CA)/polyvinyl alcohol (PVA) nanofibers, TiO2was added to CA/PVA to increase the porosity, and glutaraldehyde (GA) was used to modify the CA/PVA/TiO2separator by acetal reaction with CA and PVA to make the molecules closely linked. The results shows that the optimal mass fractions of TiO2and GA were 2% and 5%, respectively. At this time, the porosity and absorption rate of the separator increased from 48% to 68.2% and 142.4% to 285.3%, respectively. The discharge capacity reached 179 mA cm-3, and the cycle stability rate was 89% after 7 stable constant current charge/discharge cycles.

13.
Adv Mater ; 36(1): e2308889, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37960976

RESUMO

Li-CO2 batteries arouse great interest in the context of carbon neutralization, but their practicability is severely hindered by the sluggish CO2 redox reaction kinetics at the cathode, which brings about formidable challenges such as high overpotential and low Coulombic efficiency. For the complex multi-electron transfer process, the design of catalysts at the molecular or atomic level and the understanding of the relationship between electron state and performance are essential for the CO2 redox. However, little attention is paid to it. In this work, using Co3 S4 as a model system, density functional theory (DFT) calculations reveal that the adjusted d-band and p-band centers of Co3 S4 with the introduction of Cu and sulfur vacancies are hybridized between CO2 and Li species, respectively, which is conducive to the adsorption of reactants and the decomposition of Li2 CO3 , and the experimental results further verify the effectiveness of energy band engineering. As a result, a highly efficient bidirectional catalyst is produced and shows an ultra-small voltage gap of 0.73 V and marvelous Coulombic efficiency of 92.6%, surpassing those of previous catalysts under similar conditions. This work presents an effective catalyst design and affords new insight into the high-performance cathode catalyst materials for Li-CO2 batteries.

14.
Adv Mater ; 36(1): e2309264, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985147

RESUMO

Lithium-carbon dioxide (Li-CO2 ) batteries are regarded as a prospective technology to relieve the pressure of greenhouse emissions but are confronted with sluggish CO2 redox kinetics and low energy efficiency. Developing highly efficient and low-cost catalysts to boost bidirectional activities is craved but remains a huge challenge. Herein, derived from the spent lithium-ion batteries, a tandem catalyst is subtly synthesized and significantly accelerates the CO2 reduction and evolution reactions (CO2 RR and CO2 ER) kinetics with an in-built electric field (BEF). Combining with the theoretical calculations and advanced characterization techniques, this work reveals that the designed interface-induced BEF regulates the adsorption/decomposition of the intermediates during CO2 RR and CO2 ER, endowing the recycled tandem catalyst with excellent bidirectional activities. As a result, the spent electronics-derived tandem catalyst exhibits remarkable bidirectional catalytic performance, such as an ultralow voltage gap of 0.26 V and an ultrahigh energy efficiency of 92.4%. Profoundly, this work affords new opportunities to fabricate low-cost electrocatalysts from recycled spent electronics and inspires fresh perceptions of interfacial regulation including but not limited to BEF to engineer better Li-CO2 batteries.

15.
ACS Nano ; 17(24): 25419-25438, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38055636

RESUMO

Low-dose radiotherapy (LDR) has shown significant implications for inflaming the immunosuppressive tumor microenvironment (TME). Surprisingly, we identify that FABP-dependent lipid droplet biogenesis in tumor cells is a key determinant of LDR-evoked cytotoxic and immunostimulatory effects and developed a nanointegrated strategy to promote the antitumor efficacy of LDR through cooperative ferroptosis immunotherapy. Specifically, TCPP-TK-PEG-PAMAM-FA, a nanoscale multicomponent functional polymer with self-assembly capability, was synthesized for cooperatively entrapping hafnium ions (Hf4+) and HIF-1α-inhibiting siRNAs (siHIF-1α). The TCPP@Hf-TK-PEG-PAMAM-FA@siHIF-1α nanoassemblies are specifically taken in by folate receptor-overexpressing tumor cells and activated by the elevated cellular ROS stress. siHIF-1α could readily inhibit the FABP3/7 expression in tumor cells via HIF-1α-FABP3/7 signaling and abolish lipid droplet biogenesis for enhancing the peroxidation susceptibility of membrane lipids, which synergizes with the elevated ROS stress in the context of Hf4+-enhanced radiation exposure and evokes pronounced ferroptotic damage in vital membrane structures. Interestingly, TCPP@Hf-TK-PEG-PAMAM-FA@siHIF-1α-enhanced ferroptotic biomembrane damage also facilitates the exposure of tumor-associated antigens (TAAs) to promote post-LDR immunotherapeutic effects, leading to robust tumor regression in vivo. This study offers a nanointegrative approach to boost the antitumor effects of LDR through the utilization of tumor-intrinsic lipid metabolism.


Assuntos
Ferroptose , Neoplasias , Humanos , Espécies Reativas de Oxigênio , Gotículas Lipídicas , Neoplasias/radioterapia , Imunoterapia , Linhagem Celular Tumoral , Microambiente Tumoral
16.
Discov Oncol ; 14(1): 195, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907650

RESUMO

OBJECTIVE: To explore the DPP4 expression changes and functions in ovarian cancer (OV), as well as the regulation mechanism for DDP4. METHODS: GEPIA2, GSE18520, GSE26712 and UALCAN were used to analyze differences in DPP4 expression between OV tumors and control tissues. Serum DPP4 levels were measured by ELISA. The prognostic values of DPP4 were evaluated using a Kaplan-Meier (KM) plotter. Small interfering RNA was used for DPP4 knockdown in OVCAR-3 and SKOV-3 cells. CCK-8 and scratch healing assays were used to determine the cells' proliferation and migration abilities. Flow cytometry (FCM) was used to detect the cell cycle and apoptosis. A dual-luciferase assay was designed to confirm the regulatory effect of miR-29a-3p on DPP4. RESULTS: The expressions of DPP4 mRNA and protein were decreased in OV tumor tissues. Serum DPP4 levels decreased in OV patients. KM plotter analysis showed correlation between high DPP4 expression and a poor prognosis in OV patients. By targeting knockdown of DPP4, we found that OVCAR-3 and SKOV-3 cells' proliferation was inhibited, while cell's migration ability was significantly promoted. FCM analysis showed that DPP4 knockdown induced a decrease in the S phase. Furthermore, DPP4 was shown to be downregulated by miR-29a-3p and TGFß1 in OVCAR-3 cells, and miR-29a-3p expression was upregulated by TGFß1. The effects of miR-29a-3p and TGFß1 on OVCAR-3 cells' biological behaviors were consistent with DPP4 knockdown. CONCLUSION: DPP4 was downregulated in OV patients. DPP4 knockdown significantly inhibited OVCAR-3 and SKOV-3 cell proliferation and promoted cell migration. DDP4 can be downregulated by TGFß1 through the upregulation of miR-29a-3p in OV cells.

17.
Nat Commun ; 14(1): 7021, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919262

RESUMO

Immune-checkpoint inhibitors (ICI) are promising modalities for treating triple negative breast cancer (TNBC). However, hyperglycolysis, a hallmark of TNBC cells, may drive tumor-intrinsic PD-L1 glycosylation and boost regulatory T cell function to impair ICI efficacy. Herein, we report a tumor microenvironment-activatable nanoassembly based on self-assembled aptamer-polymer conjugates for the targeted delivery of glucose transporter 1 inhibitor BAY-876 (DNA-PAE@BAY-876), which remodels the immunosuppressive TME to enhance ICI response. Poly ß-amino ester (PAE)-modified PD-L1 and CTLA-4-antagonizing aptamers (aptPD-L1 and aptCTLA-4) are synthesized and co-assembled into supramolecular nanoassemblies for carrying BAY-876. The acidic tumor microenvironment causes PAE protonation and triggers nanoassembly dissociation to initiate BAY-876 and aptamer release. BAY-876 selectively inhibits TNBC glycolysis to deprive uridine diphosphate N-acetylglucosamine and downregulate PD-L1 N-linked glycosylation, thus facilitating PD-L1 recognition of aptPD-L1 to boost anti-PD-L1 therapy. Meanwhile, BAY-876 treatment also elevates glucose supply to tumor-residing regulatory T cells (Tregs) for metabolically rewiring them into an immunostimulatory state, thus cooperating with aptCTLA-4-mediated immune-checkpoint inhibition to abolish Treg-mediated immunosuppression. DNA-PAE@BAY-876 effectively reprograms the immunosuppressive microenvironment in preclinical models of TNBC in female mice and provides a distinct approach for TNBC immunotherapy in the clinics.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antígeno B7-H1 , Inibidores de Checkpoint Imunológico/uso terapêutico , Terapia de Imunossupressão , DNA , Microambiente Tumoral , Linhagem Celular Tumoral
18.
Cell Rep ; 42(10): 113213, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37804510

RESUMO

The tumor microenvironment (TME) plays decisive roles in disabling T cell-mediated antitumor immunity, but the immunoregulatory functions of its biophysical properties remain elusive. Extracellular matrix (ECM) stiffening is a hallmark of solid tumors. Here, we report that the stiffened ECM contributes to the immunosuppression in TME via activating the Rho-associated coiled-coil-containing protein kinase (ROCK)-myosin IIA-filamentous actin (F-actin) mechanosignaling pathway in tumor cells to promote the generation of TRIM14-scavenging nonmuscle myosin heavy chain IIA (NMHC-IIA)-F-actin stress fibers, thus accelerating the autophagic degradation of cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) to deprive tumor cyclic GMP-AMP (cGAMP) and further attenuating tumor immunogenicity. Pharmacological inhibition of myosin IIA effector molecules with blebbistatin (BLEB) or the RhoA upstream regulator of this pathway with simvastatin (SIM) restored tumor-intrinsic cGAS-mediated cGAMP production and enhanced antitumor immunity. Our work identifies that ECM stiffness is an important biophysical cue to regulate tumor immunogenicity via the ROCK-myosin IIA-F-actin axis and that inhibiting this mechanosignaling pathway could boost immunotherapeutic efficacy for effective solid tumor treatment.


Assuntos
Mecanotransdução Celular , Nucleotidiltransferases , Actinas/metabolismo , GMP Cíclico , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Miosina não Muscular Tipo IIA/metabolismo , Nucleotidiltransferases/metabolismo , Humanos , Animais , Camundongos
19.
Med Sci Monit ; 29: e940805, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37715366

RESUMO

Tendon-bone injuries are a prevalent health concern associated with sports and other physically demanding activities. These injuries have a limited innate healing ability, often leading to the formation of scar tissue rather than the regeneration of healthy tendon tissue. This scar tissue results from excessive fibrosis during the early healing process and often leads to reduced tendon function and an increased risk of reinjury. Traditionally, surgical reconstruction has been the primary treatment for tendon-bone injuries. However, restoring the natural structure and mechanical properties of tendons after surgical reconstruction presents a considerable challenge. Recently, the potential of stem cell therapy has been explored as an alternative treatment approach. In particular, a new type of pluripotent stem cell known as tendon stem cells (TDSCs) has been identified within tendon tissue. These cells exhibit the potential for self-renewal and multidirectional differentiation, meaning they can differentiate into fibroblasts and chondrocytes. These differentiated cells can aid in the repair and regeneration of new tissues by producing collagen and other matrix molecules that provide structural support. TDSCs have become a focal point in research for treating tendon-bone injuries and related conditions. The potential use of these cells provides a basis for both basic research and clinical applications, particularly in understanding the tendon-bone healing process and identifying factors that affect the ability of TDSCs to promote this healing. This review article aims to analyze the role of TDSCs in tendon-bone healing, understanding their therapeutic potential and contributing to the development of effective treatment strategies for tendon-bone injuries.


Assuntos
Células-Tronco Pluripotentes , Traumatismos dos Tendões , Humanos , Cicatriz , Tendões , Traumatismos dos Tendões/terapia , Regeneração Óssea
20.
ACS Nano ; 17(16): 15328-15353, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37573530

RESUMO

Ferroptosis, a type of regulated cell death driven by iron-dependent phospholipid peroxidation, has captured much attention in the field of nanomedicine since it was coined in 2012. Compared with other regulated cell death modes such as apoptosis and pyroptosis, ferroptosis has many distinct features in the molecular mechanisms and cellular morphology, representing a promising strategy for treating cancers that are resistant to conventional therapeutic modalities. Moreover, recent insights collectively reveal that ferroptosis is tightly connected to the maintenance of the tumor immune microenvironment (TIME), suggesting the potential application of ferroptosis therapies for evoking robust antitumor immunity. From a biochemical perspective, ferroptosis is intricately regulated by multiple cellular metabolic pathways, including iron metabolism, lipid metabolism, redox metabolism, etc., highlighting the importance to elucidate the relationship between tumor metabolism and ferroptosis for developing antitumor therapies. In this review, we provide a comprehensive discussion on the current understanding of ferroptosis-inducing mechanisms and thoroughly discuss the relationship between ferroptosis and various metabolic traits of tumors, which offer promising opportunities for direct tumor inhibition through a nanointegrated approach. Extending from the complex impact of ferroptosis on TIME, we also discussed those important considerations in the development of ferroptosis-based immunotherapy, highlighting the challenges and strategies to enhance the ferroptosis-enabled immunostimulatory effects while avoiding potential side effects. We envision that the insights in this study may facilitate the development and translation of ferroptosis-based nanomedicines for tumor treatment.


Assuntos
Ferroptose , Neoplasias , Humanos , Nanomedicina , Metabolismo dos Lipídeos , Neoplasias/tratamento farmacológico , Ferro , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...