Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2404143, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38785180

RESUMO

Commencing with the breakdown of the diabetic osteoimmune microenvironment, multiple pathogenic factors, including hyperglycemia, inflammation, hypoxia, and deleterious cytokines, are conjointly involved in the progression of diabetic periodontal bone regeneration. Based on the challenge of periodontal bone regeneration treatment and the absence of real-time feedback of blood oxygen fluctuation in diabetes mellitus, a novel self-adaptive hyperthermia supramolecular cascade nano-reactor ACFDG is constructed via one-step supramolecular self-assembly strategy to address multiple factors in diabetic periodontal bone regeneration. Hyperthermia supramolecular ACFDG possesses high photothermal conversion efficiency (32.1%), and it can effectively inhibit the vicious cycle of ROS-inflammatory cascade through catalytic cascade reactions, up-regulate the expression of heat shock proteins (HSPs) under near-infrared (NIR) irradiation, which promotes periodontal bone regeneration. Remarkably, ACFDG can provide real-time non-invasive diagnosis of blood oxygen changes during periodontal bone regeneration through photoacoustic (PA) imaging, thus can timely monitor periodontal hypoxia status. In conclusion, this multifunctional supramolecular nano-reactor combined with PA imaging for real-time efficacy monitoring provides important insights into the biological mechanisms of diabetic periodontal bone regeneration and potential clinical theranostics.

4.
Nat Commun ; 11(1): 634, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005815

RESUMO

The non-equilibrium dynamics of electrons and nuclei govern the function of photoactive materials. Disentangling these dynamics remains a critical goal for understanding photoactive materials. Here we investigate the photoinduced dynamics of the [Fe(bmip)2]2+ photosensitizer, where bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-pyridine, with simultaneous femtosecond-resolution Fe Kα and Kß X-ray emission spectroscopy (XES) and X-ray solution scattering (XSS). This measurement shows temporal oscillations in the XES and XSS difference signals with the same 278 fs period oscillation. These oscillations originate from an Fe-ligand stretching vibrational wavepacket on a triplet metal-centered (3MC) excited state surface. This 3MC state is populated with a 110 fs time constant by 40% of the excited molecules while the rest relax to a 3MLCT excited state. The sensitivity of the Kα XES to molecular structure results from a 0.7% average Fe-ligand bond length shift between the 1 s and 2p core-ionized states surfaces.

6.
Angew Chem Int Ed Engl ; 59(1): 364-372, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31602726

RESUMO

Iron N-heterocyclic carbene (NHC) complexes have received a great deal of attention recently because of their growing potential as light sensitizers or photocatalysts. We present a sub-ps X-ray spectroscopy study of an FeII NHC complex that identifies and quantifies the states involved in the deactivation cascade after light absorption. Excited molecules relax back to the ground state along two pathways: After population of a hot 3 MLCT state, from the initially excited 1 MLCT state, 30 % of the molecules undergo ultrafast (150 fs) relaxation to the 3 MC state, in competition with vibrational relaxation and cooling to the relaxed 3 MLCT state. The relaxed 3 MLCT state then decays much more slowly (7.6 ps) to the 3 MC state. The 3 MC state is rapidly (2.2 ps) deactivated to the ground state. The 5 MC state is not involved in the deactivation pathway. The ultrafast partial deactivation of the 3 MLCT state constitutes a loss channel from the point of view of photochemical efficiency and highlights the necessity to screen transition-metal complexes for similar ultrafast decays to optimize photochemical performance.

7.
J Am Chem Soc ; 141(43): 17112-17116, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31621312

RESUMO

The reaction of nitrous oxide (N2O) with N-heterocyclic olefins (NHOs) results in cleavage of the N-O bond and formation of azo-bridged NHO dimers. The latter represent very electron-rich compounds with a low ionization energy. Cyclic voltammetry studies show that the dimers can be classified as new organic super-electron-donors, with a reducing power similar to what is found for tetraazafulvalene derivatives. Mild oxidants are able to convert the neutral dimers into radical cations, which can be isolated. Further oxidation gives stable dications.

8.
Chem Sci ; 10(22): 5719-5724, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31293757

RESUMO

The synthesis of the industrially important polymer parylene is achieved by polymerization of p-quinodimethane (p-QDM). The polymerization is thought to proceed via a biradical p-QDM dimer, but isolation or characterization of such a biradical has remained elusive. Here, we describe the synthesis of an aza-analogue of this p-QDM dimer. The biradical is formed by base-induced dimerization of an azoimidazolium dye. Due to the presence of sterically shielded aminyl radicals instead of terminal H2C groups, the stability of this dimer is sufficient for analyses by ESR spectroscopy and X-ray crystallography. A similar Csp3-Csp3 coupling was observed for an azotriazolium dye, suggesting that base-induced C-C coupling reactions can be realized for different types of azo dyes.

9.
Chem Sci ; 10(22): 5749-5760, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31293761

RESUMO

Light-driven molecular reactions are dictated by the excited state potential energy landscape, depending critically on the location of conical intersections and intersystem crossing points between potential surfaces where non-adiabatic effects govern transition probabilities between distinct electronic states. While ultrafast studies have provided significant insight into electronic excited state reaction dynamics, experimental approaches for identifying and characterizing intersections and seams between electronic states remain highly system dependent. Here we show that for 3d transition metal systems simultaneously recorded X-ray diffuse scattering and X-ray emission spectroscopy at sub-70 femtosecond time-resolution provide a solid experimental foundation for determining the mechanistic details of excited state reactions. In modeling the mechanistic information retrieved from such experiments, it becomes possible to identify the dominant trajectory followed during the excited state cascade and to determine the relevant loci of intersections between states. We illustrate our approach by explicitly mapping parts of the potential energy landscape dictating the light driven low-to-high spin-state transition (spin crossover) of [Fe(2,2'-bipyridine)3]2+, where the strongly coupled nuclear and electronic dynamics have been a source of interest and controversy. We anticipate that simultaneous X-ray diffuse scattering and X-ray emission spectroscopy will provide a valuable approach for mapping the reactive trajectories of light-triggered molecular systems involving 3d transition metals.

10.
Faraday Discuss ; 216(0): 191-210, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31016293

RESUMO

Ultrafast dynamics of photoinduced charge transfer processes in light-harvesting systems based on Earth-abundant transition metal complexes are of current interest for the development of molecular devices for solar energy conversion applications. A combination of ultrafast spectroscopy and first principles quantum chemical calculations of a recently synthesized iron carbene complex is used to elucidate the ultrafast excited state evolution processes in these systems with particular emphasis on investigating the underlying reasons why these complexes show promise in terms of significantly extended lifetimes of charge transfer excited states. Together, our results challenge the traditional excited state landscape for iron-based light harvesting transition metal complexes through radically different ground and excited state properties in alternative oxidation states. This includes intriguing indications of rich band-selective excited state dynamics on ultrafast timescales that are interpreted in terms of excitation energy dependence for excitations into a manifold of charge-transfer states. Some implications of the observed excited state properties and photoinduced dynamics for the utilization of iron carbene complexes for solar energy conversion applications are finally discussed.

11.
Chemistry ; 24(70): 18809-18815, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30426605

RESUMO

The one-electron reduction of nitrous oxide (N2 O) was achieved using strong Lewis acids E(C6 F5 )3 (E=B or Al) in combination with metallocenes. In the case of B(C6 F5 )3 , electron transfer to N2 O required a powerful reducing agent such as Cp*2 Co (Cp*=pentamethylcyclopentadienyl). In the presence of Al(C6 F5 )3 , on the other hand, the reactions could be performed with weaker reducing agents such as Cp*2 Fe or Cp2 Fe (Cp=cyclopentadienyl). The Lewis acid-mediated electron transfer from the metallocene to N2 O resulted in cleavage of the N-O bond, generating N2 and the oxyl radical anion [OE(C6 F5 )3 ]⋅- . The latter is highly reactive and engages in C-H activation reactions. It was possible to trap the radical by addition of the Gomberg dimer, which acts as a source of the trityl radical.

12.
Inorg Chem ; 57(19): 11859-11863, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30215513

RESUMO

The chemical activation of nitrous oxide (N2O) typically results in O-atom transfer and the extrusion of N2 gas. In contrast, reactions of N-trimethylsilyl (TMS)-substituted amides with N2O give inorganic or organic azides, with concomitant formation of silanols or siloxanes. N-TMS-substituted amides are also able to induce N-O bond cleavage in N2O-derived dialkylaminodiazotates, generating tetrazene salts. These results indicate the potential of silyl groups in devising transformations, in which N2O acts as an N-atom donor.

13.
Chem Sci ; 9(2): 405-414, 2018 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-29629111

RESUMO

Recent years have seen the development of new iron-centered N-heterocyclic carbene (NHC) complexes for solar energy applications. Compared to typical ligand systems, the NHC ligands provide Fe complexes with longer-lived metal-to-ligand charge transfer (MLCT) states. This increased lifetime is ascribed to strong ligand field splitting provided by the NHC ligands that raises the energy levels of the metal centered (MC) states and therefore reduces the deactivation efficiency of MLCT states. Among currently known NHC systems, [Fe(btbip)2]2+ (btbip = 2,6-bis(3-tert-butyl-imidazol-1-ylidene)pyridine) is a unique complex as it exhibits a short-lived MC state with a lifetime on the scale of a few hundreds of picoseconds. Hence, this complex allows for a detailed investigation, using 100 ps X-ray pulses from a synchrotron, of strong ligand field effects on the intermediate MC state in an NHC complex. Here, we use time-resolved wide angle X-ray scattering (TRWAXS) aided by density functional theory (DFT) to investigate the molecular structure, energetics and lifetime of the high-energy MC state in the Fe-NHC complex [Fe(btbip)2]2+ after excitation to the MLCT manifold. We identify it as a 260 ps metal-centered quintet (5MC) state, and we refine the molecular structure of the excited-state complex verifying the DFT results. Using information about the hydrodynamic state of the solvent, we also determine, for the first time, the energy of the 5MC state as 0.75 ± 0.15 eV. Our results demonstrate that due to the increased ligand field strength caused by NHC ligands, upon transition from the ground state to the 5MC state, the metal to ligand bonds extend by unusually large values: by 0.29 Å in the axial and 0.21 Å in the equatorial direction. These results imply that the transition in the photochemical properties from typical Fe complexes to novel NHC compounds is manifested not only in the destabilization of the MC states, but also in structural distortion of these states.

14.
Sensors (Basel) ; 18(4)2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29652867

RESUMO

Wide-coverage spatial information on irrigated croplands is a vital foundation for food security and water resources studies at the regional level. Several global irrigated-cropland maps have been released to the public over the past decade due to the efforts of the remote sensing community. However, the consistency and discrepancy between these maps is largely unknown because of a lack of comparative studies, limiting their use and improvement. To close this knowledge gap, we compared the latest four irrigated-cropland datasets (GMIA, GRIPC, GlobCover, and GFSAD) in mainland China. First, the four maps were compared quantitatively and neutral regional- and provincial-level statistics of the relative proportions of irrigated land were obtained through regression analysis. Second, we compared the similarities and discrepancies of the datasets on spatial grids. Furthermore, the contributions of mosaic cropland pixels in GlobCover and GFSAD were also analyzed because of their extensive distribution and ambiguous content. Results showed that GMIA has the lowest dispersion and best statistical correlation followed by GRIPC, while the corresponding features of GlobCover and GFSAD are approximately equal. Spatial agreement of the four maps is higher in eastern than western China, and disagreement is contributed mostly by GlobCover and GFSAD. However, divergence exists in the ratios of the different agreement levels, as well as their sources, on a regional scale. Mosaic pixels provide more than half of the irrigated areas for GlobCover and GFSAD, and they include both correct and incorrect information. Our results indicate a need for a uniform quantitative classification system and for greater focus on heterogeneous regions. Furthermore, the results demonstrate the advantage of numerical restriction in the calculations. Therefore, special attention should be paid to integrating databases and to exploring remote sensing features and methods for spatial reconstruction and identification of untypical irrigation areas.

15.
J Phys Chem Lett ; 9(3): 459-463, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29298063

RESUMO

The iron carbene complex [FeII(btz)3](PF6)2 (where btz = 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene)) has been synthesized, isolated, and characterized as a low-spin ferrous complex. It exhibits strong metal-to-ligand charge transfer (MLCT) absorption bands throughout the visible spectrum, and excitation of these bands gives rise to a 3MLCT state with a 528 ps excited-state lifetime in CH3CN solution that is more than one order of magnitude longer compared with the MLCT lifetime of any previously reported FeII complex. The low potential of the [Fe(btz)3]3+/[Fe(btz)3]2+ redox couple makes the 3MLCT state of [FeII(btz)3]2+ a potent photoreductant that can be generated by light absorption throughout the visible spectrum. Taken together with our recent results on the [FeIII(btz)3]3+ form of this complex, these results show that the FeII and FeIII oxidation states of the same Fe(btz)3 complex feature long-lived MLCT and LMCT states, respectively, demonstrating the versatility of iron N-heterocyclic carbene complexes as promising light-harvesters for a broad range of oxidizing and reducing conditions.

16.
Phys Chem Chem Phys ; 20(6): 4238-4249, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29364300

RESUMO

The excited state dynamics of solvated [Fe(bpy)(CN)4]2-, where bpy = 2,2'-bipyridine, show significant sensitivity to the solvent Lewis acidity. Using a combination of optical absorption and X-ray emission transient spectroscopies, we have previously shown that the metal to ligand charge transfer (MLCT) excited state of [Fe(bpy)(CN)4]2- has a 19 picosecond lifetime and no discernable contribution from metal centered (MC) states in weak Lewis acid solvents, such as dimethyl sulfoxide and acetonitrile.1,2 In the present work, we use the same combination of spectroscopic techniques to measure the MLCT excited state relaxation dynamics of [Fe(bpy)(CN)4]2- in water, a strong Lewis acid solvent. The charge-transfer excited state is now found to decay in less than 100 femtoseconds, forming a quasi-stable metal centered excited state with a 13 picosecond lifetime. We find that this MC excited state has triplet (3MC) character, unlike other reported six-coordinate Fe(ii)-centered coordination compounds, which form MC quintet (5MC) states. The solvent dependent changes in excited state non-radiative relaxation for [Fe(bpy)(CN)4]2- allows us to infer the influence of the solvent on the electronic structure of the complex. Furthermore, the robust characterization of the dynamics and optical spectral signatures of the isolated 3MC intermediate provides a strong foundation for identifying 3MC intermediates in the electronic excited state relaxation mechanisms of similar Fe-centered systems being developed for solar applications.

17.
Struct Dyn ; 4(4): 044030, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28653021

RESUMO

We have used femtosecond resolution UV-visible and Kß x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy)2(CN)2], where bpy=2,2'-bipyridine, initiated by metal-to-ligand charge transfer (MLCT) excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,2'-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kß x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy)2(CN)2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a short lived metal-centered triplet transient species. These measurements of [Fe(bpy)2(CN)2] complement prior measurement performed on [Fe(bpy)3]2+ and [Fe(bpy)(CN)4]2- in dimethylsulfoxide solution and help complete the chemical series [Fe(bpy)N(CN)6-2N]2N-4, where N = 1-3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3d transition metal complexes.

18.
Chem Sci ; 8(1): 515-523, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451198

RESUMO

Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover - the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN-) ligands and one 2,2'-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kß hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2-. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kß fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. We conclude that the MLCT excited state of [Fe(CN)4(bpy)]2- decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2'-bipyridine)3]2+ by more than two orders of magnitude.

19.
Nature ; 543(7647): 695-699, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28358064

RESUMO

Transition-metal complexes are used as photosensitizers, in light-emitting diodes, for biosensing and in photocatalysis. A key feature in these applications is excitation from the ground state to a charge-transfer state; the long charge-transfer-state lifetimes typical for complexes of ruthenium and other precious metals are often essential to ensure high performance. There is much interest in replacing these scarce elements with Earth-abundant metals, with iron and copper being particularly attractive owing to their low cost and non-toxicity. But despite the exploration of innovative molecular designs, it remains a formidable scientific challenge to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered photoluminescent at room temperature, and their rapid excited-state deactivation precludes their use as photosensitizers. Here we present the iron complex [Fe(btz)3]3+ (where btz is 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene)), and show that the superior σ-donor and π-acceptor electron properties of the ligand stabilize the excited state sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(iii) d5 complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer (2LMCT) state that is rarely seen for transition-metal complexes. The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces. These findings suggest that appropriate design strategies can deliver new iron-based materials for use as light emitters and photosensitizers.

20.
Acc Chem Res ; 49(8): 1477-85, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27455191

RESUMO

The photophysics and photochemistry of transition metal complexes (TMCs) has long been a hot field of interdisciplinary research. Rich metal-based redox processes, together with a high variety in electronic configurations and excited-state dynamics, have rendered TMCs excellent candidates for interconversion between light, chemical, and electrical energies in intramolecular, supramolecular, and interfacial arrangements. In specific applications such as photocatalytic organic synthesis, photoelectrochemical cells, and light-driven supramolecular motors, light absorption by a TMC-based photosensitizer and subsequent excited-state energy or electron transfer constitute essential steps. In this context, TMCs based on rare and expensive metals, such as ruthenium and iridium, are frequently employed as photosensitizers, which is obviously not ideal for large-scale implementation. In the search for abundant and environmentally benign solutions, six-coordinate Fe(II) complexes (Fe(II)L6) have been widely considered as highly desirable alternatives. However, not much success has been achieved due to the extremely short-lived triplet metal-to-ligand charge transfer ((3)MLCT) excited state that is deactivated by low-lying metal-centered (MC) states on a 100 fs time scale. A fundamental strategy to design useful Fe-based photosensitizers is thus to destabilize the MC states relative to the (3)MLCT state by increasing the ligand field strength, with special focus on making eg σ* orbitals on the Fe center energetically less accessible. Previous efforts to directly transplant successful strategies from Ru(II)L6 complexes unfortunately met with limited success in this regard, despite their close chemical kinship. In this Account, we summarize recent promising results from our and other groups in utilizing strongly σ-donating N-heterocyclic carbene (NHC) ligands to make strong-field Fe(II)L6 complexes with significantly extended (3)MLCT lifetimes. Already some of the first homoleptic bis(tridentate) complexes incorporating (CNHC^Npyridine^CNHC)-type ligands gratifyingly resulted in extension of the (3)MLCT lifetime by more than 2 orders of magnitude compared to the parental [Fe(tpy)2](2+) (tpy = 2,2':6',2″-terpyridine) complex. Quantum chemical (QC) studies also revealed that the (3)MC instead of the (5)MC state likely dictates the deactivation of the (3)MLCT state, a behavior distinct from traditional Fe(II)L6 complexes but rather resembling Ru analogues. A heteroleptic Fe(II) NHC complex featuring mesoionic bis(1,2,3-triazol-5-ylidene) (btz) ligands also delivered a 100-fold elongation of the (3)MLCT lifetime relative to its parental [Fe(bpy)3](2+) (bpy = 2,2'-bipyridine) complex. Again, a Ru-like deactivation mechanism of the (3)MLCT state was indicated by QC studies. With a COOH-functionalized homoleptic complex, a record (3)MLCT lifetime of 37 ps was recently observed on an Al2O3 nanofilm. As a proof of concept, it was further demonstrated that the significant improvement in the (3)MLCT lifetime indeed benefits efficient light harvesting with Fe(II) NHC complexes. For the first time, close-to-unity electron injection from the lowest-energy (3)MLCT state to a TiO2 nanofilm was achieved by a stable Fe(II) complex. This is in complete contrast to conventional Fe(II)L6-derived photosensitizers that could only make use of high-energy photons. These exciting results significantly broaden the understanding of the fundamental photophysics and photochemistry of d(6) Fe(II) complexes. They also open up new possibilities to develop solar energy-converting materials based on this abundant, inexpensive, and intrinsically nontoxic element.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...