Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Hum Exp Toxicol ; 42: 9603271231191436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37537902

RESUMO

Recent extensive evidence suggests that ambient fine particulate matter (PM2.5, with an aerodynamic diameter ≤2.5 µm) may be neurotoxic to the brain and cause central nervous system damage, contributing to neurodevelopmental disorders, such as autism spectrum disorders, neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, and mental disorders, such as schizophrenia, depression, and bipolar disorder. PM2.5 can enter the brain via various pathways, including the blood-brain barrier, olfactory system, and gut-brain axis, leading to adverse effects on the CNS. Studies in humans and animals have revealed that PM2.5-mediated mechanisms, including neuroinflammation, oxidative stress, systemic inflammation, and gut flora dysbiosis, play a crucial role in CNS damage. Additionally, PM2.5 exposure can induce epigenetic alterations, such as hypomethylation of DNA, which may contribute to the pathogenesis of some CNS damage. Through literature analysis, we suggest that promising therapeutic targets for alleviating PM2.5-induced neurological damage include inhibiting microglia overactivation, regulating gut microbiota with antibiotics, and targeting signaling pathways, such as PKA/CREB/BDNF and WNT/ß-catenin. Additionally, several studies have observed an association between PM2.5 exposure and epigenetic changes in neuropsychiatric disorders. This review summarizes and discusses the association between PM2.5 exposure and CNS damage, including the possible mechanisms by which PM2.5 causes neurotoxicity.


Assuntos
Doença de Alzheimer , Síndromes Neurotóxicas , Animais , Humanos , Material Particulado/toxicidade , Encéfalo , Barreira Hematoencefálica , Síndromes Neurotóxicas/etiologia
2.
FASEB J ; 37(8): e23063, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37401890

RESUMO

Sepsis-induced myocardial depression (SIMD) is common in pediatric intensive care units and seriously threatens children's health. Recently, long noncoding RNAs (lncRNAs) have been showed to play important roles in various diseases; however, its role in SIMD is unclear. In this study, we used lipopolysaccharide (LPS)-treated rats and H9c2 cardiomyocytes to mimic SIMD in vivo and in vitro. We found that the expression of a novel lncRNA, we named lncRNA-AABR07066529.3, was elevated in LPS-induced rat heart tissue and H9c2 cardiomyocytes. In addition, LPS-induced inflammation, apoptosis, and pyroptosis were significantly exacerbated after lncRNA-AABR07066529.3 knockdown. Moreover, we found that myeloid differentiation factor 88 (MyD88) was upregulated in LPS-treated groups and was inhibited by lncRNA-AABR07066529.3. Besides, MyD88 knockdown abolished lncRNA-AABR07066529.3 silencing effects on inflammation, apoptosis, and pyroptosis induced by LPS in H9c2 cardiomyocytes. In our study, we found lncRNA-AABR07066529.3 exerted protective effects on LPS-induced cardiomyocytes by regulating MyD88 and might serve as a potential treatment target for SIMD.


Assuntos
Cardiomiopatias , MicroRNAs , RNA Longo não Codificante , Animais , Ratos , Apoptose , Cardiomiopatias/metabolismo , Depressão , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Miócitos Cardíacos/metabolismo , Piroptose/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
Biomed Pharmacother ; 164: 114931, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37263163

RESUMO

Sirtuins (SIRTs) are a nicotinic adenine dinucleotide (+) -dependent histone deacetylase that regulates critical signaling pathways in prokaryotes and eukaryotes. Studies have identified seven mammalian homologs of the yeast SIRT silencing message regulator 2, namely, SIRT1-SIRT7. Recent in vivo and in vitro studies have successfully demonstrated the involvement of SIRTs in key pathways for cell biological function in physiological and pathological processes of the cardiovascular system, including processes including cellular senescence, oxidative stress, apoptosis, DNA damage, and cellular metabolism. Emerging evidence has stimulated a significant evolution in preventing and treating cardiovascular disease (CVD). Here, we review the important roles of SIRTs for the regulatory pathways involved in the pathogenesis of cardiovascular diseases and their molecular targets, including novel protein post-translational modifications of succinylation. In addition, we summarize the agonists and inhibitors currently identified to target novel specific small molecules of SIRTs. A better understanding of the role of SIRTs in the biology of CVD opens new avenues for therapeutic intervention with great potential for preventing and treating CVD.


Assuntos
Doenças Cardiovasculares , Sirtuínas , Animais , Humanos , Doenças Cardiovasculares/genética , Sirtuínas/genética , Sirtuínas/metabolismo , Senescência Celular/genética , Estresse Oxidativo/genética , Biologia Molecular , Mamíferos
4.
FASEB J ; 37(4): e22866, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36929614

RESUMO

Uncontrolled diabetes causes a catabolic state with multi-organic complications, of which impairment on skeletal muscle contributes to the damaged mobility. Kcnma1 gene encodes the pore-forming α-subunit of Ca2+ - and voltage-gated K+ channels of large conductance (BK channels), and loss-of-function mutations in Kcnma1 are in regards to impaired myogenesis. Herein, we observed a time-course reduction of Kcnma1 expression in the tibialis anterior muscles of leptin receptor-deficient (db/db) diabetic mice. To investigate the role of Kcnma1 in diabetic muscle atrophy, muscle-specific knockdown of Kcnma1 was achieved by mice receiving intravenous injection of adeno-associated virus-9 (AAV9)-encoding shRNA against Kcnma1 under the muscle creatine kinase (MCK) promoter. Impairment on muscle mass and myogenesis were observed in m/m mice with AAV9-shKcnma1 intervention, while this impairment was more obvious in diabetic db/db mice. Simultaneously, damaged mitochondrial dynamics and biogenesis showed much severer in db/db mice with AAV9-shKcnma1 intervention. RNA sequencing revealed the large transcriptomic changes resulted by Kcnma1 knockdown, and changes in mitochondrial homeostasis-related genes were validated. Besides, the artificial alteration of Kcnma1 in mouse C2C12 myoblasts was achieved with an adenovirus vector. Consistent results were demonstrated by Kcnma1 knockdown in palmitate-treated cells, whereas opposite results were exhibited by Kcnma1 overexpression. Collectively, we document Kcnma1 as a potential keeper of mitochondrial homeostasis, and the loss of Kcnma1 is a critical event in priming skeletal muscle loss in diabetes.


Assuntos
Diabetes Mellitus Experimental , Canais de Potássio Ativados por Cálcio de Condutância Alta , Camundongos , Animais , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Homeostase
5.
Shock ; 58(5): 434-456, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36155389

RESUMO

ABSTRACT: Background: The exact molecular mechanisms underlying sepsis remain unclear. Accumulating evidence has shown that noncoding RNAs (ncRNAs) are involved in sepsis and sepsis-associated organ dysfunction (SAOD). Methods: We performed this updated systematic review focusing mainly on research conducted in the last 5 years regarding ncRNAs associated with sepsis and SAOD. The following medical subject headings were used in the PubMed database from October 1, 2016, to March 31, 2022: "microRNA," "long noncoding RNA," "circular RNA," "sepsis," and/or "septic shock." Studies investigating the role of ncRNAs in the pathogenesis of sepsis and as biomarkers or therapeutic targets in the disease were included. Data were extracted in terms of the role of ncRNAs in the pathogenesis of sepsis and their applicability for use as biomarkers or therapeutic targets in sepsis. The quality of the studies was assessed using a modified guideline from the Systematic Review Center for Laboratory Animal Experimentation. Results: A total of 537 original studies investigated the potential roles of ncRNAs in sepsis and SAOD. Experimental studies in the last 5 years confirmed that long ncRNAs have important regulatory roles in sepsis and SAOD. However, studies on circular RNAs and sepsis remain limited, and more studies should be conducted to elucidate this relationship. Among the included studies, the Systematic Review Center for Laboratory Animal Experimentation scores ranged from 3 to 7 (an average score of 3.78). Notably, 94 ncRNAs were evaluated as potential biomarkers for sepsis, and selective reporting of the sensitivity, specificity, and receiver operating characteristic curve was common. A total of 117 studies demonstrated the use of ncRNAs as potential therapeutic targets in sepsis and SAOD. At a molecular level, inflammation-related pathways, mitochondrial dysfunction, cell apoptosis, and/or oxidative stress were the most extensively studied. Conclusion: This review suggests that ncRNAs could be good biomarkers and therapeutic candidates for sepsis and SAOD. Prospective, large-scale, and multicenter cohort studies should be performed to evaluate specific ncRNAs as biomarkers and test the organ-specific delivery of these regulatory molecules when used as therapeutic targets.


Assuntos
MicroRNAs , RNA Longo não Codificante , Sepse , Animais , Insuficiência de Múltiplos Órgãos/genética , Estudos Prospectivos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA Circular , RNA Longo não Codificante/genética , MicroRNAs/genética , Sepse/complicações , Sepse/genética , Sepse/metabolismo , Biomarcadores/metabolismo , Estudos Multicêntricos como Assunto
6.
Front Cell Infect Microbiol ; 12: 962139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967871

RESUMO

Sepsis, a life-threatening organ dysfunction caused by a dysregulated host response to infection, is a leading cause of death in intensive care units. The development of sepsis-associated organ dysfunction (SAOD) poses a threat to the survival of patients with sepsis. Unfortunately, the pathogenesis of sepsis and SAOD is complicated, multifactorial, and has not been completely clarified. Recently, numerous studies have demonstrated that pyroptosis, which is characterized by inflammasome and caspase activation and cell membrane pore formation, is involved in sepsis. Unlike apoptosis, pyroptosis is a pro-inflammatory form of programmed cell death that participates in the regulation of immunity and inflammation. Related studies have shown that in sepsis, moderate pyroptosis promotes the clearance of pathogens, whereas the excessive activation of pyroptosis leads to host immune response disorders and SAOD. Additionally, transcription factors, non-coding RNAs, epigenetic modifications and post-translational modifications can directly or indirectly regulate pyroptosis-related molecules. Pyroptosis also interacts with autophagy, apoptosis, NETosis, and necroptosis. This review summarizes the roles and regulatory mechanisms of pyroptosis in sepsis and SAOD. As our understanding of the functions of pyroptosis improves, the development of new diagnostic biomarkers and targeted therapies associated with pyroptosis to improve clinical outcomes appears promising in the future.


Assuntos
Piroptose , Sepse , Apoptose , Humanos , Inflamassomos/metabolismo , Insuficiência de Múltiplos Órgãos/etiologia , Piroptose/fisiologia , Sepse/complicações
7.
Oxid Med Cell Longev ; 2022: 3137329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855865

RESUMO

Cardiovascular disease (CVD) has become a leading cause of mortality and morbidity globally, making it an urgent concern. Although some studies have been performed on CVD, its molecular mechanism remains largely unknown for all types of CVD. However, recent in vivo and in vitro studies have successfully identified the important roles of posttranslational modifications (PTMs) in various diseases, including CVD. Protein modification, also known as PTMs, refers to the chemical modification of specific amino acid residues after protein biosynthesis, which is a key process that can influence the activity or expression level of proteins. Studies on PTMs have contributed directly to improving the therapeutic strategies for CVD. In this review, we examined recent progress on PTMs and highlighted their importance in both physiological and pathological conditions of the cardiovascular system. Overall, the findings of this review contribute to the understanding of PTMs and their potential roles in the treatment of CVD.


Assuntos
Doenças Cardiovasculares , Humanos , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo
8.
Anticancer Agents Med Chem ; 22(13): 2448-2457, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35040419

RESUMO

AIM: This study aimed to investigate the anticancer effect and the underlying mechanisms of organoantimony (III) fluoride on MDA-MB-231 human breast cancer cells. METHODS: Five cancer and one normal cell line were treated with an organoantimony (III) compound 6-cyclohexyl-12- fluoro-5,6,7,12-tetrahydrodibenzo[c,f][1,5]azastibocine (denoted as C4). The cell viability was detected by MTT assay. Induction of cell death was determined by Hoechst 33342/PI staining and Annexin-V/PI staining. The effect of C4 on the necroptotic relative protein was determined by Western blot analysis. RESULTS: Among the five cancer cell lines, C4 decreased the viability of MDA-MB-231, MCF-7 and A2780/cisR, and showed less toxicity on normal human embryonic kidney cells. In breast cancer cell line MDA-MB-231, the C4 treatment induced necrotic cell death as well as LDH release in a time- and dose-dependent manner. Moreover, C4 could increase the expression of phosphorylated RIPK3 and MLKL proteins. Overall, the C4 treatment resulted in the reduction of mitochondrial transmembrane potential and accumulation of ROS in MDA-MB-231 cells. CONCLUSION: C4-induced necroptosis could be ascribed to glutathione depletion and ROS elevation in MDA-MB-231 cells. Our findings illustrate C4 to be a potential necroptosis inducer for breast cancer treatment.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Apoptose , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Feminino , Humanos , Necroptose , Espécies Reativas de Oxigênio/metabolismo
9.
Gene ; 808: 145973, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34592350

RESUMO

INTRODUCTION: Abnormal expression of ionotropic glutamate receptor NMDA type subunit 1, the key subunit of the NMDA receptor, may be related to many neuropsychiatric disorders. In this study, we explored the functional sequence of the 5' regulatory region of the human GRIN1 gene and discussed the transcription factors that may regulate gene expression. MATERIALS AND METHODS: Twelve recombinant pGL3 vectors with gradually truncated fragment lengths were constructed, transfected into HEK-293, U87, and SK-N-SH cell lines, and analyzed through the luciferase reporter gene assay. JASPAR database is used to predict transcription factors. RESULTS: In SK-N-SH and U87 cell lines, regions from -337 to -159 bp, -704 to -556 bp inhibited gene expression, while -556 to -337 bp upregulated gene expression. In HEK-293 and U87 cell lines, the expression of fragment -1703 to + 188 bp was significantly increased compared to adjacent fragments -1539 to + 188 bp and -1843 to + 188 bp. The protein expressions of fragments -2162 to + 188 bp and -2025 to + 188 bp, -1539 to + 188 bp and -1215 to + 188 bp, -1215 to + 188 bp and -1066 to + 188 bp were significantly different in HEK-293 and SK-N-SH cells. According to the predictions of the JASPAR database, the transcription factors REST, EGR1, and CREB1/HIC2 may bind the DNA sequences of GRIN1 gene from the -337 to -159, -556 to -337, and -704 to -556, respectively. In addition, zinc finger transcription factors may regulate the expression of other differentially expressed fragments. CONCLUSIONS: Abnormal transcription regulation in the proximal promoter region of GRIN1 (-704 to + 188 bp) may be involved in the course of neuropsychiatric diseases.


Assuntos
Regiões 5' não Traduzidas/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Linhagem Celular Tumoral , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Genes Reporter , Células HEK293 , Humanos , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Ativação Transcricional/genética
10.
Comput Intell Neurosci ; 2021: 5436729, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512742

RESUMO

The prevention and control of navel orange pests and diseases is an important measure to ensure the yield of navel oranges. Aiming at the problems of slow speed, strong subjectivity, high requirements for professional knowledge required, and high identification costs in the identification methods of navel orange pests and diseases, this paper proposes a method based on DenseNet and attention. The power mechanism fusion (DCPSNET) identification method of navel orange diseases and pests improves the traditional deep dense network DenseNet model to realize accurate and efficient identification of navel orange diseases and pests. Due to the difficulty in collecting data of navel orange pests and diseases, this article uses image enhancement technology to expand. The experimental results show that, in the case of small samples, compared with the traditional model, the DCPSNET model can accurately identify different types of navel orange diseases and pests images and the accuracy of identifying six types of navel orange diseases and pests on the test set is as high as 96.90%. The method proposed in this paper has high recognition accuracy, realizes the intelligent recognition of navel orange diseases and pests, and also provides a way for high-precision recognition of small sample data sets.


Assuntos
Citrus sinensis , Controle de Pragas
11.
Neoplasma ; 68(5): 1033-1042, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34427098

RESUMO

It has been reported that cyclin-dependent kinase like 3 (CDKL3) plays a crucial role in cell proliferation and migration in several cancers. However, the function of CDKL3 in triple-negative breast cancer (TNBC) is still unclear. In the present study, immunohistochemistry (IHC) was conducted to detect the CDKL3 expression. CCK-8, flow cytometry, Transwell assays, and mice xenograft models, were performed to explore the roles of CDKL3 on the proliferation and migration of TNBC in vitro and in vivo. Besides, protein chip analysis was used to screen the potential pathways, which was further confirmed by promoter activity assay, western blotting, and CCK-8 assay. Our findings reveal a high expression of CDKL3 in TNBC tissues, which is closely related to a poor prognosis of patients with TNBC. In TNBC cells, CDKL3 knockdown inhibits cell proliferation and migration, whereas CDKL3 overexpression has exactly the opposite effect. Consistently, CDKL3 knockdown induces cell apoptosis in vitro but suppresses tumor growth in vivo. Furthermore, CDKL3 knockdown increases p53 expression and reduces cell viability, and these effects are significantly weakened by the p53 inhibitor, PFT-α. In conclusion, the current study highlights that CDKL3 promotes TNBC progressions via regulating the p53 signaling pathway, suggesting that CDKL3 is a novel therapeutic target for TNBC treatment.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética , Proteína Supressora de Tumor p53/genética
12.
World J Diabetes ; 12(7): 1057-1069, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34326954

RESUMO

The presence of excess glucose in blood is regarded as a sweet hurt for patients with diabetes. Human serum albumin (HSA) is the most abundant protein in human plasma, which undergoes severe non-enzymatic glycation with glucose in patients with diabetes; this modifies the structure and function of HSA. Furthermore, the advanced glycation end products produced by glycated HSA can cause pathological damage to the human body through various signaling pathways, eventually leading to complications of diabetes. Many potential glycation sites on HSA have different degrees of sensitivity to glucose concentration. This review provides a comprehensive assessment of the in vivo glycation sites of HSA; it also discusses the effects of glycation on the structure and function of HSA. Moreover, it addresses the relationship between HSA glycation and diabetes complications. Finally, it focuses on the value of non-enzymatic glycation of HSA in diabetes-related clinical applications.

13.
World J Diabetes ; 12(1): 47-55, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33520107

RESUMO

BACKGROUND: Diabetic kidney disease is a microvascular complication of diabetes with complex pathogenesis. Wingless signaling-mediated renal fibrosis is associated with diabetic kidney disease. Dickkopf-1, a negative regulator of Wingless, has been proven to participate in renal fibrosis, glucose metabolism, and inflammation. However, whether serum Dickkopf-1 levels are associated with diabetic kidney disease remains unclear. AIM: To assess the relationship between serum Dickkopf-1 levels and albuminuria in individuals with type 2 diabetes. METHODS: Seventy-three type 2 diabetes patients and 24 healthy individuals were enrolled in this case-control study. Diabetic individuals were separated into normal albuminuria, microalbuminuria, and macroalbuminuria groups based on their urinary albumin/creatinine ratios (UACRs). Clinical characteristics and metabolic indices were recorded. Serum Dickkopf-1 levels were determined by enzyme-linked immunosorbent assay. RESULTS: No significant difference in serum Dickkopf-1 levels was found between healthy individuals and the normal albuminuria group. However, the levels in the microalbuminuria group were significantly lower than those in the normal albuminuria group (P = 0.017), and those in the macroalbuminuria group were the lowest. Bivariate analysis revealed that serum Dickkopf-1 levels were positively correlated with hemoglobin A1c level (r = 0.368, P < 0.01) and estimated glomerular filtration rate (r = 0.339, P < 0.01), but negatively correlated with diabetes duration (r = -0.231, P = 0.050), systolic blood pressure (r = -0.369, P = 0.001), serum creatinine level (r = -0.325, P < 0.01), and UACR (r = -0.459, P < 0.01). Multiple and logistic regression showed that serum Dickkopf-1 levels were independently associated with UACR (odds ratio = 0.627, P = 0.021). CONCLUSION: Serum Dickkopf-1 levels are negatively associated with UACR. Lower serum Dickkopf-1 levels could be a critical risk factor for albuminuria in diabetes.

14.
Neuropsychiatr Dis Treat ; 16: 2361-2370, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116535

RESUMO

PURPOSE: Abnormal expression of the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor may potentially increase the susceptibility to neuropsychiatric diseases. The purpose of this study was to investigate the functional sequence of the 3'UTR of the human GRIN1 gene, which encodes the GluN1 receptor to determine the effect on the expression of GluN1 receptor. METHODS: We transferred seven recombinant pmirGLO recombinant vectors containing the 3'UTR truncated fragment of the GRIN1 gene into HEK-293, SK-N-SH, and U87 cell lines and compared the relative fluorescence intensity of adjacent length fragments. The TargetScan database was used to predict miRNAs. Then, miRNA mimics/inhibitors were co-transfected into the three cell lines with the 3'UTR of GRIN1 (pmirGLO - GRIN1), to investigate their influence on GRIN1 gene expression. RESULTS: Compared with the pmirGLo-Basic vector, the relative fluorescence intensity of the complete GRIN1 gene 3'UTR recombinant sequence -27 bp - +1284 bp (the next base of the stop codon is +1) was significantly decreased in all three cell lines. The relative fluorescence intensities were significantly different between -27 bp - +294 bp and -27 bp - +497 bp regions, and between -27 bp - +708 bp and -27 bp - +907 bp regions. According to the prediction of the TargetScan database and analysis, miR-212-5p, miR-324-3p and miR-326 may bind to +295 bp - +497 bp, while miR-491-5p may bind to +798 bp - +907 bp. After co-transfection of miRNA mimic/inhibitor or mimic/inhibitor NC with a recombinant vector in the 3'UTR region of GRIN1 gene, we found that has-miR-491-5p inhibited GRIN1 expression significantly in all three cell lines, while has-miR-326 inhibitor upregulated GRIN1 expression in HEK-293 and U87 cells. CONCLUSION: miR-491-5p may bind to the 3'UTR of the GRIN1 gene (+799 bp - +805 bp, the next base of the stop codon is +1) and down-regulate gene expression in HEK-293, SK-N-SH, and U87 cell lines, which implicates a potential role of miR-491-5p in central nervous system diseases.

15.
BMC Med Genet ; 21(1): 159, 2020 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-32770953

RESUMO

BACKGROUND: The CACNA1C gene was defined as a risk gene for schizophrenia in a large genome-wide association study of European ancestry performed by the Psychiatric Genomics Consortium. Previous meta-analyses focused on the association between the CACNA1C gene rs1006737 and schizophrenia. The present study focused on whether there was an ancestral difference in the effect of the CACNA1C gene rs1006737 on schizophrenia. rs2007044 and rs4765905 were analyzed for their effect on the risk of schizophrenia. METHODS: Pooled, subgroup, sensitivity, and publication bias analysis were conducted. RESULTS: A total of 18 studies met the inclusion criteria, including fourteen rs1006737 studies (15,213 cases, 19,412 controls), three rs2007044 studies (6007 cases, 6518 controls), and two rs4765905 studies (2435 cases, 2639 controls). An allele model study also related rs2007044 and rs4765905 to schizophrenia. The overall meta-analysis for rs1006737, which included the allele contrast, dominant, recessive, codominance, and complete overdominance models, showed significant differences between rs1006737 and schizophrenia. However, the ancestral-based subgroup analysis for rs1006737 found that the genotypes GG and GG + GA were only protective factors for schizophrenia in Europeans. In contrast, the rs1006737 GA genotype only reduced the risk of schizophrenia in Asians. CONCLUSIONS: Rs1006737, rs2007044, and rs4765905 of the CACNA1C gene were associated with susceptibility to schizophrenia. However, the influence model for rs1006737 on schizophrenia in Asians and Europeans demonstrated both similarities and differences between the two ancestors.


Assuntos
Canais de Cálcio Tipo L/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Adulto , Alelos , Feminino , Frequência do Gene/genética , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Viés de Publicação , Fatores de Risco , Adulto Jovem
16.
Neuropsychiatr Dis Treat ; 16: 1519-1532, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606704

RESUMO

BACKGROUND: Epidemiological studies have shown that genetic factors are among the causes of schizophrenia. Galanin receptor 1 is an inhibitory receptor of galanin that is widely distributed in the central nervous system. This study mainly explored the relationship between polymorphisms of the 5' region of the GALR1 gene and schizophrenia in the northern Chinese Han population. METHODS: A 1545 bp fragment of the 5' regulatory region of the GALR1 gene was amplified and sequenced in 289 schizophrenia patients and 347 healthy controls. RESULTS: Among the haplotypes composed of the 16 detected SNPs, the haplotype H3 was identified as conferring a risk of schizophrenia (p=0.011, OR=1.430, 95% CI=1.084-1.886). In addition, the haplotypes H4 and H7 were both protective against schizophrenia (p=0.024, OR=0.526, 95% CI=0.298-0.927; p=0.037, OR=0.197, 95% CI=0.044-0.885, respectively). In the subgroup analysis by sex, it was found that seven SNP alleles (rs72978691, rs11662010, rs11151014, rs11151015, rs13306374, rs5373, rs13306375) conferred a risk of schizophrenia in females (p<0.05), while allele G of rs7242919 (p=0.007) was protective against schizophrenia in females. Moreover, the rs72978691 AA+AC genotype (p=0.006, OR=1.874, 95% CI=1.196-2.937, power=0.780), rs7242919 CC+CG genotype (p=0.002, OR=2.027, 95% CI=1.292-3.180, power=0.861), rs11151014 GG+GT genotype (p=0.008, OR=1.834, 95% CI=1.168-2.879, power=0.735), rs11151015 GG+AG genotype (p=0.002, OR=2.013, 95% CI =1.291-3.137, power=0.843), rs13306374 CC+AC genotype (p=0.006, OR=1.881, 95% CI=1.198-2.953, power=0.788), and rs13306375 GG+AG genotype (p=0.006, OR=1.868, 95% CI=1.194-2.921, power=0.770) increased the risk of schizophrenia in females. The haplotype FH2 consisting of rs72978691, rs11662010, rs7242919, rs11151014, rs11151015, rs13306374, rs5373, and rs13306375 may also be associated with the risk of schizophrenia in females (p=0.024). CONCLUSION: This study identified an association between polymorphisms in the 5' region of the GALR1 gene and schizophrenia, especially in females.

17.
J Int Med Res ; 48(6): 300060520932801, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32567430

RESUMO

OBJECTIVE: Schizophrenia is a severe neurodevelopmental disorder with a complex genetic and environmental etiology. The gene encoding EF-hand domain-containing protein D2 (EFHD2) may be a genetic risk locus for schizophrenia. METHODS: We genotyped four EFHD2 single-nucleotide polymorphisms (281 schizophrenia cases [SCZ], 321 controls) from northern Chinese Han individuals using Sanger sequencing and polymerase chain reaction-restriction fragment length polymorphism analysis. Differences existed in genotype, allele, and haplotype frequency distributions between SCZ and control groups. RESULTS: The rs2473357 genotype and allele frequency distributions differed between SCZ and controls; however, this difference disappeared after Bonferroni correction. Differences in rs2473357 genotype and allele frequency distributions between SCZ and controls were more pronounced in men than in women. The G allele increased schizophrenia risk (odds ratio = 1.807, 95% confidence interval = 1.164-2.803). Among six haplotypes (G-, A-, G-insC, A-C, G-C, and G-T), the G- haplotype frequency distribution differed between SCZ and controls in women; the A-C and G-C haplotype frequency distributions differed between SCZ and controls in men. CONCLUSIONS: EFHD2 may be involved in schizophrenia. Sex differences in EFHD2 genotype and allele frequency distributions existed among schizophrenia patients. Further research is needed to determine the role of EFHD2 in schizophrenia.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Esquizofrenia/genética , Adulto , Alelos , Povo Asiático/genética , Proteínas de Ligação ao Cálcio/metabolismo , Estudos de Casos e Controles , China , Etnicidade/genética , Feminino , Frequência do Gene/genética , Estudos de Associação Genética/métodos , Predisposição Genética para Doença/genética , Genótipo , Haplótipos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Polimorfismo de Nucleotídeo Único/genética
18.
J Mol Neurosci ; 70(11): 1851-1857, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32388801

RESUMO

Schizophrenia is a serious neurodevelopmental disorder. Genetics is an important factor leading to schizophrenia, but its exact role is still unclear. Many studies have focused on neurotransmitters and regulators that participate in the processes mediated by these neurotransmitters. Alcohol dehydrogenase may not only catalyze the oxidation of retinol and ethanol but also be involved in a variety of neurotransmitter metabolic pathways. Therefore, our study investigated whether ADH7 gene variations in the Chinese Han population were associated with schizophrenia. Genomic DNA was extracted from a cohort of 275 schizophrenic patients (136 men and 139 women) and 313 healthy controls (160 men and 153 women) from the Northern Han Chinese population. The Hardy-Weinberg equilibrium test and linkage disequilibrium analysis were performed. Differences in genotypes, alleles, and haplotypes between the schizophrenic and control groups were determined using the chi-square test and correlation analysis. The distribution of the CC + TT genotype of rs284787 was statistically different between the case and control groups (p = 0.026, OR = 1.448); however, the difference disappeared after Bonferroni correction. Linkage analysis indicated that rs739147, rs284787, rs3805329, rs894369, rs3805331, and rs284786 were closely linked in one block. The haplotype analysis found no association between the composed haplotypes and the occurrence of schizophrenia. Our study showed that the ADH7 gene was not associated with the risk of schizophrenia. Additional studies with larger cohorts of different ethnicities are needed to validate our findings.


Assuntos
Álcool Desidrogenase/genética , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética , China , Feminino , Humanos , Desequilíbrio de Ligação , Masculino
19.
World J Diabetes ; 11(4): 115-125, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32313610

RESUMO

Obesity is associated with adverse metabolic diseases including cardiovascular disease (CVD) and chronic kidney disease (CKD). These obesity-related diseases are highly associated with excess fat accumulation in adipose tissue. However, emerging evidence indicates that visceral adiposity associates more with metabolic and cardiovascular risk factors. Perirenal adipose tissue, surrounding the kidney, is originally thought to provides only mechanical support for kidney. However, more studies demonstrated perirenal adipose tissue have a closer association with renal disease than other visceral fat deposits in obesity. Additionally, perirenal adipose tissue is also an independent risk factor for CKD and even associated more with CVD. Thus, perirenal adipose tissue may be a connection of CVD with CKD. Here, we will provide an overview of the perirenal adipose tissue, a neglected visceral adipose tissue, and the roles of perirenal adipose tissue linking with CVD and CKD and highlight the perirenal adipose tissue as a potential strategy for future therapeutics against obesity-related disease.

20.
Neuropsychiatr Dis Treat ; 16: 985-992, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32346293

RESUMO

BACKGROUND: Abnormal RGS4 gene expression may cause neurotransmitter disorders, resulting in schizophrenia. The association between RGS4 and the risk of schizophrenia is controversial, and there has been little research on the SNPs in the promoter region of RGS4. PURPOSE: The present study was performed to detect the association between SNPs in the promoter region of the RGS4 gene and the risk of schizophrenia. MATERIALS AND METHODS: In this study, the 1757-bp fragment (-1119-+600, TSS+1) of RGS4 was amplified and sequenced in 198 schizophrenia patients and 264 healthy controls of the northern Chinese Han population. Allele, genotype and haplotype frequencies were analyzed by chi-square test. RESULTS: Four SNPs were detected in the region. LD analysis determined that rs7515900 was linked to rs10917671 (D' = 1, r2 = 1). Therefore, the data for rs10917671 were eliminated from further analysis. Genotype TT of rs12041948 (P = 0.009, OR = 1.829, and 95% CI = 0.038-0.766) was significantly different between the two groups in the northern Chinese Han population. In males, genotype GG of rs6678136 (P = 0.009, OR = 2.292, and 95% CI = 1.256-4.18) and CC of rs7515900 (P = 0.003, OR = 2.523, and 95% CI = 1.332-4.778) were significantly different. CONCLUSION: The results of this study suggested that genotype TT of rs12041948 in the pooled male and female samples and GG of rs6678136 and CC of rs7515900 in the male samples could be risk factors for schizophrenia. The present study is the first to detect an association between SNPs in the promoter region of the RGS4 gene and the risk of schizophrenia in the northern Chinese Han population. Functional studies are required to confirm these findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...