Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(18): 183803, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38759188

RESUMO

Time crystal is a class of nonequilibrium phases with broken time-translational symmetry. Here, we demonstrate the time crystal in a single-mode nonlinear cavity. The time crystal originates from the self-oscillation induced by a linear gain and is stabilized by a nonlinear damping. We show in the time crystal phase there are sharp dissipative gap closing and pure imaginary eigenvalues of the Liouvillian spectrum in the thermodynamic limit. Dynamically, we observe a metastable regime with the emergence of quantum oscillation, followed by a dissipative evolution with a timescale much longer than the oscillating period. Moreover, we show there is a dissipative phase transition at the Hopf bifurcation, which can be characterized by the photon number fluctuation in the steady state. These results pave a new promising way for further experiments and deepen our understanding of time crystals.

2.
Environ Int ; 187: 108724, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38735076

RESUMO

The mass concentration of atmospheric particulate matter (PM) has been continuously decreasing in the Beijing-Tianjin-Hebei region. However, health endpoints do not exhibit a linear correlation with PM mass concentrations. Thus, it is urgent to clarify the prior toxicological components of PM to further improve air quality. In this study, we analyzed the long-term oxidative potential (OP) of water-soluble PM2.5, which is generally considered more effective in assessing hazardous exposure to PM in Beijing from 2018 to 2022 based on the dithiothreitol assay and identified the crucial drivers of the OP of PM2.5 based on online monitoring of air pollutants, receptor model, and random forest (RF) model. Our results indicate that dust, traffic, and biomass combustion are the main sources of the OP of PM2.5 in Beijing. The complex interactions of dust particles, black carbon, and gaseous pollutants (nitrogen dioxide and sulfur dioxide) are the main factors driving the OP evolution, in particular, leading to the abnormal rise of OP in Beijing in 2022. Our data shows that a higher OP is observed in winter and spring compared to summer and autumn. The diurnal variation of the OP is characterized by a declining trend from 0:00 to 14:00 and an increasing trend from 14:00 to 23:00. The spatial variation in OP of PM2.5 was observed as the OP in Beijing is lower than that in Shijiazhuang, while it is higher than that in Zhenjiang and Haikou, which is primarily influenced by the distribution of black carbon. Our results are of significance in identifying the key drivers influencing the OP of PM2.5 and provide new insights for advancing air quality improvement efforts with a focus on safeguarding human health in Beijing.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Material Particulado/análise , Pequim , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Oxirredução , Melhoria de Qualidade , Estações do Ano
3.
Phys Rev Lett ; 132(11): 113402, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563940

RESUMO

The Greenberger-Horne-Zeilinger (GHZ) state is a key resource for quantum information processing and quantum metrology. The atomic GHZ state can be generated by one-axis twisting (OAT) interaction H_{OAT}=χJ_{z}^{2} with χ the interaction strength, but it requires a long evolution time χt=π/2 and is thus seriously influenced by decoherence and losses. Here we propose a three-body collective-spin XYZ model which creates a GHZ-like state in a very short timescale χt∼lnN/N for N particles. We show that this model can be effectively produced by applying Floquet driving to an original OAT Hamiltonian. Compared with the ideal GHZ state, the GHZ-like state generated using our model can maintain similar metrological properties reaching the Heisenberg-limited scaling, and it shows better robustness to decoherence and particle losses. This Letter opens the avenue for generating GHZ-like states with a large particle number, which holds great potential for the study of macroscopic quantum effects and for applications in quantum metrology and quantum information.

4.
J Environ Sci (China) ; 142: 69-82, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527897

RESUMO

A comprehensive health risk assessment of PM2.5 is meaningful to understand the current status and directions regarding further improving air quality from the perspective of human health. In this study, we evaluated the health risks of PM2.5 as well as highly toxic inorganic components, including heavy metals (HMs) and black carbon (BC) based on long-term observations in Beijing from 2019 to 2021. Our results showed that the relative risks of chronic obstructive pulmonary disease, lung cancer, acute lower respiratory tract infection, ischemic heart disease, and stroke decreased by 4.07%-9.30% in 2020 and 2.12%-6.70% in 2021 compared with 2019. However, they were still at high levels ranging from 1.26 to 1.77, in particular, stroke showed the highest value in 2021. Mn had the highest hazard quotient (HQ, from 2.18 to 2.56) for adults from 2019 to 2021, while Ni, Cr, Pb, As, and BC showed high carcinogenic risks (CR > 1.0×10-6) for adults. The HQ values of Mn and As and the CR values of Pb and As showed constant or slight upwards trends during our observations, which is in contrast to the downward trends of other HMs and PM2.5. Mn, Cr, and BC are crucial toxicants in PM2.5. A significant shrink of southern region sourcesof HMs and BCshrank suggests the increased importance of local sources. Industry, dust, and biomass burning are the major contributors to the non-carcinogenic risks, while traffic emissions and industry are the dominant contributors to the carcinogenic risks in Beijing.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Acidente Vascular Cerebral , Oligoelementos , Adulto , Humanos , Pequim , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Chumbo , Poeira/análise , Metais Pesados/análise , Medição de Risco , Carbono , Material Particulado/análise
5.
Environ Sci Technol ; 58(12): 5442-5452, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38478878

RESUMO

New particle formation and growth greatly influence air quality and the global climate. Recent CERN Cosmics Leaving OUtdoor Droplets (CLOUD) chamber experiments proposed that in cold urban atmospheres with highly supersaturated HNO3 and NH3, newly formed sub-10 nm nanoparticles can grow rapidly (up to 1000 nm h-1). Here, we present direct observational evidence that in winter Beijing with persistent highly supersaturated HNO3 and NH3, nitrate contributed less than ∼14% of the 8-40 nm nanoparticle composition, and overall growth rates were only ∼0.8-5 nm h-1. To explain the observed growth rates and particulate nitrate fraction, the effective mass accommodation coefficient of HNO3 (αHNO3) on the nanoparticles in urban Beijing needs to be 2-4 orders of magnitude lower than those in the CLOUD chamber. We propose that the inefficient uptake of HNO3 on nanoparticles is mainly due to the much higher particulate organic fraction and lower relative humidity in urban Beijing. To quantitatively reproduce the observed growth, we show that an inhomogeneous "inorganic core-organic shell" nanoparticle morphology might exist for nanoparticles in Beijing. This study emphasized that growth for nanoparticles down to sub-10 nm was largely influenced by their composition, which was previously ignored and should be considered in future studies on nanoparticle growth.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Nitratos , Monitoramento Ambiental , Poluição do Ar/análise , Compostos Orgânicos , Tamanho da Partícula
6.
Heliyon ; 10(3): e25060, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38314296

RESUMO

Previous research has identified a negative association between mobile phone addiction and time management disposition among college students; however, the direction of this relationship remains divergent. This study utilized a cross-lagged panel model to elucidate the directionality of the relationship between mobile phone addiction and time management disposition. A total of 466 college students completed two measures at seven-month intervals. The findings revealed a prevalence of mobile phone addiction at 10.94 % and 13.73 % in the two surveys. Notably, both mobile phone addiction and time management disposition demonstrated stability over time. Furthermore, a discernible negative bidirectional relationship was observed between the two. The present findings underscore the importance of timely intervention for college students facing challenges in mobile phone usage and time management.

7.
Water Res ; 253: 121337, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387266

RESUMO

The marine environment of the southern Bohai Sea is severely polluted by short-chain chlorinated paraffins (SCCPs). To improve understanding of how SCCPs occur and of how they migrate, are transformed, and transferred in this area, we collected seawater, sediment, and organism samples, and determined the SCCP contents using a new approach based on high-resolution mass spectrometry. The ΣSCCP concentrations in the seawater, sediment, and organism samples ranged from 57.5 to 1150.4 ng/L, 167.7-1105.9 ng/g (dry weight), and 11.4-583.0 ng/g (wet weight), respectively. Simulation of the spatial distribution of SCCPs using Kriging interpolation showed that SCCPs were markedly influenced by land-based pollution. Substantial quantities of SCCPs were transported to the marine environment via surface runoff from rivers that passed through areas of major SCCP production. Once discharged from such rivers into the Bohai Sea, these SCCPs were further dispersed under the influence of ocean currents. Furthermore, the logarithmic bioaccumulation factor that varied from 2.12 to 3.20 and the trophic magnification factor that reached 5.60 (r2 = 0.750, p < 0.01) suggest that organisms have the ability to accumulate and biomagnify SCCPs through the food chain, which could potentially present risks to both marine ecosystems and human health.


Assuntos
Ecossistema , Hidrocarbonetos Clorados , Humanos , Parafina/análise , Parafina/química , Monitoramento Ambiental , China
8.
Environ Res ; 248: 118250, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244964

RESUMO

The persistent O3 pollution in the Beijing-Tianjin-Hebei (BTH) region remains unresolved, largely due to limited comprehension of O3-precursor relationship and photochemistry drivers. In this work, intraday O3 sensitivity evolution from VOC-limited (volatile organic compound) regime in the forenoon to transition regime in the late afternoon was inferred by relative incremental reactivity (RIR) in summer 2019 at Xianghe, a suburban site in BTH region, suggesting that VOC-focused control policy could combine with stringent afternoon NOx control. Then detailed impacts of VOC subgroups on O3 formation were further comprehensively quantified by parametric OH reactivity (KOH), O3 formation potential (OFP), as well as RIR weighted value and O3 formation path tracing (OFPT) approach based on photochemical box model. O3 episode days corresponded to stronger O3 formation, depicted by higher KOH (10.4 s-1), OFP (331.7 µg m-3), RIR weighted value (1.2), and F(O3)-OFPT (15.5 ppbv h-1). High proportions of isoprene and OVOCs (oxygenated VOCs) to the total KOH and the OFPT method were demonstrated whereas results of OFP and RIR-weighted presented extra great impacts of aromatics on O3 formation. The OFPT approach captured the process that has already happened and included final O3 response to the original VOC, thus reliable for replicating VOC impacts. The comparison results of the four methods showed similarities when utilizing KOH and OFPT methods, which reveals that the potential applicability of simple KOH for contingency VOC control and more complex OFPT method for detailed VOC- and source-oriented control during policy-making. To investigate propulsion of VOC-involved O3 photochemistry, atmospheric oxidation capacity (AOC) was quantified by two atmospheric oxidation indexes (AOI). Both AOIp_G (7.0 × 107 molec cm-3 s-1, potential AOC calculated by oxidation reaction rates) and AOIe_G (8.5 µmol m-3, estimated AOC given redox electron transfer for oxidation products) were stronger on O3 episode days, indicating that AOC promoted the radical cycling initiated from VOC oxidation and subsequent O3 production. Result-oriented AOIe_G reasonably characterized actual AOC inferred by good linear correlation between AOIe_G and O3 concentrations compared to process-oriented AOIp_G. Therefore, with continuous NOx abatement, AOIe_G should be considered to represent actual AOC, also O3-inducing ability.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Ozônio/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , China , Oxirredução
9.
Nat Protoc ; 19(2): 539-564, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38049624

RESUMO

Two-dimensional (2D) protein films can be used to modify the properties of surfaces, and find applications predominantly in the fields of biomaterials, lithography, optics and electronics. However, it is difficult to produce scalable homogeneous and robust protein films with an easy, low-cost, green and efficient method. Further challenges include encapsulating and releasing functional building blocks in the film without inactivating them, and maintaining or improving the bioactivities of proteins used for the formation of the films. Here we detail the process to prepare large 2D protein films with user-defined features and structures via the amyloid-like aggregation of commonly synthesized proteins. These films can be synthesized at meter scales, have high interface adhesion, high functional expansibility and tunable functional properties, obtained by controlling the position of the disulfide bond breakage. For example, we can retain or even enhance the natural antibacterial, biomineralization and antifouling activity of proteins involved in film formation, and the properties can also be expanded through the physical blending or chemical grafting of additional functional blocks on the surface of the film. A 2D protein film can be prepared in ~3 h using four alternative coating techniques: immersion, transfer, hydrogel stamping and spraying. The characterization process of the film requires ~5 d. The procedure can be carried out by users with basic expertise in materials science.


Assuntos
Materiais Biocompatíveis , Proteínas , Antibacterianos
10.
J Fungi (Basel) ; 9(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37998863

RESUMO

Recent studies have found that many marine microbial polysaccharides exhibit distinct immune activity. However, there is a relative scarcity of research on the immunomodulatory activity of marine fungal exopolysaccharides. A novel water-soluble fungal exopolysaccharide ASP-1 was isolated from the fermentation broths of marine coral-associated fungus Aspergillus pseudoglaucus SCAU265, and purified by Diethylaminoethyl-Sepharose-52 (DEAE-52) Fast Flow and Sephadex G-75. Structural analysis revealed that ASP-1 had an average molecular weight of 36.07 kDa and was mainly composed of (1→4)-linked α-D-glucopyranosyl residues, along with highly branched heteropolysaccharide regions containing 1,4,6-glucopyranosyl, 1,3,4-glucopyranosyl, 1,4,6-galactopyranosyl, T(terminal)-glucopyranosyl, T-mannopyranosyl, and T-galactopyranosyl residues. ASP-1 demonstrated significant effects on the proliferation, nitric oxide levels, and the secretion of cytokines TNF-α and IL-6 in macrophage RAW264.7 cells. Metabolomic analysis provided insights into the potential mechanisms of the immune regulation of ASP-1, suggesting its involvement in regulating immune function by modulating amino acid anabolism, particularly arginine synthesis and metabolism. These findings provide fundamental scientific data for further research on its accurate molecular mechanism of immunomodulatory activity.

11.
Huan Jing Ke Xue ; 44(10): 5356-5369, 2023 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-37827754

RESUMO

Recently, the contribution of inorganic salts (nitrates in particular) to the mass concentration of particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) has been increasing across China. However, it is urgent to understand how the increased inorganic salts affect the crucial properties of PM2.5. Here, we conducted continuous field observations at Zhenjiang Ecology and Environment Protection Bureau from January 1 to December 31, 2021. The mass concentrations of ammonium sulfate[(NH4)2SO4] and ammonium nitrate (NH4NO3) were calculated using different methods. The contributions of (NH4)2SO4 and NH4NO3 to the extinction coefficient, hygroscopic growth, and acidity of PM2.5 were discussed in detail. Our results demonstrated that the mean mass concentrations of (NH4)2SO4 and NH4NO3 during the study period were (6.5±4.5) and (15.0±13.3) µg·m-3, which contributed (20.5±18.2)% and (34.5±18.4)% to the mass concentration of PM2.5, respectively. The total extinction coefficient of PM2.5 was (224.5±194.2) Mm-1, in which NH4NO3 was the largest contributor[(40.1±20.9)%] followed by (NH4)2SO4[(19.1±10.8)%]. (NH4)2SO4 and NH4NO3 were also the dominant contributors to the hygroscopic growth of PM2.5. In particular, NH4NO3contributed from (53.8±13.4)% to (61.6±14.6)% to the aerosol water content of PM2.5 under pollution conditions. Thus, NH4NO3 was a key air pollutant to be targeted for further improving the visibility and air quality in Zhenjiang in the future. However, the reduction in the precursors of NH4NO3 would lead to an increase in aerosol acidity, particularly in the spring and winter seasons. Our results help us understand the evolution of air quality and the related impacts and also provide important information on air quality improvement in Zhenjiang in the future.

12.
Environ Sci Technol ; 57(39): 14638-14647, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37738177

RESUMO

Chlorine (Cl) radicals from photolabile chlorine species are highly reactive and can affect the fate of air pollutants in the atmosphere. Although several campaigns have been conducted, typically in coastal environments, long-term observations of reactive chlorine species and their impacts on atmospheric oxidation capacities (AOCs) are lacking. Here, we report nearly full-year observations of Cl2 and ClNO2 levels in Beijing and evaluate their impacts on the AOC with a box model coupled with Cl chemistry. Cl radicals promote the circulation of OH-HO2-RO2 by accelerating the OH chain lengths by up to 12.6% on average, hence boosting the AOC, especially in the winter or spring. This promotion effect is nonlinearly dependent on the VOC and NOx concentrations, thus leading to a slight shift in ozone formation from a VOC-sensitive regime to a transition regime with seasonal differences. Given the ubiquitous reactive chlorines in polluted inland urban regions, the AOCs and the formation of secondary pollutants will be underestimated if the reactive chlorine species are neglected.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Cloro , Ozônio/análise , Atmosfera , Cloretos
13.
J Environ Sci (China) ; 134: 77-85, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37673535

RESUMO

Mineralization of benzene, toluene, and xylene (BTX) with high efficiency at room temperature is still a challenge for the purification of indoor air. In this work, a foam Ti/Sb-SnO2/ß-PbO2 anode catalyst was prepared for electrocatalytically oxidizing gaseous toluene in an all-solid cell at ambient temperature. The complex Ti/Sb-SnO2/ß-PbO2 anode, which was prepared by sequentially deposing Sb-SnO2 and ß-PbO2 on a foam Ti substrate, shows high electrocatalytic oxidation efficiency of toluene (80%) at 7 hr of reaction and high CO2 selectivity (94.9%) under an optimized condition, i.e., a cell voltage of 2.0 V, relative humidity of 60% and a flow rate of 100 mL/min. The better catalytic performance can be ascribed to the high production rate of ⋅OH radicals from discharging adsorbed water and the inhibition of oxygen evolution on the surface of foam Ti/Sb-SnO2/ß-PbO2 anode when compared with the foam Ti/Sb-SnO2 anode. Our results demonstrate that prepared complex electrodes can be potentially used for electrocatalytic removal of gaseous toluene at room temperature with a good performance.


Assuntos
Gases , Titânio , Oxirredução , Eletrodos , Tolueno
14.
Nat Commun ; 14(1): 5145, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620335

RESUMO

Underwater adhesive proteins secreted by organisms greatly inspires the development of underwater glue. However, except for specific proteins such as mussel adhesive protein, barnacle cement proteins, curli protein and their related recombinant proteins, it is believed that abundant common proteins cannot be converted into underwater glue. Here, we demonstrate that unfolded common proteins exhibit high affinity to surfaces and strong internal cohesion via amyloid-like aggregation in water. Using bovine serum albumin (BSA) as a model protein, we obtain a stable unfolded protein by cleaving the disulfide bonds and maintaining the unfolded state by means of stabilizing agents such as trifluoroethanol (TFE) and urea. The diffusion of stabilizing agents into water exposes the hydrophobic residues of an unfolded protein and initiates aggregation of the unfolded protein into a solid block. A robust and stable underwater glue can thus be prepared from tens of common proteins. This strategy deciphers a general code in common proteins to construct robust underwater glue from abundant biomass.


Assuntos
Excipientes , Soroalbumina Bovina , Transporte Biológico , Proteínas Amiloidogênicas , Água
15.
J Environ Sci (China) ; 133: 161-170, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37451785

RESUMO

Fenthion and parathion are two representative kinds of organophosphorus pesticides and widely used in agriculture. They are directly or indirectly released into the atmosphere by spraying or volatilization processes. However, their heterogeneous reactivity toward OH radicals has not yet been well understood. Therefore, this work investigated the heterogeneous kinetics of the OH-initiated degradation of surface-bound fenthion and parathion using a flow reactor. The results showed that OH radicals played an important role in the atmospheric degradation of fenthion and parathion. Their average rate constants were (7.20 ± 0.77) × 10-12 and (10.40 ± 0.60) × 10-12 cm3/(mol· sec) at a relative humidity (RH) and temperature of 35% and 20 °C, respectively, suggesting that they have relatively short lifetimes in the atmosphere. In addition, a negative RH dependence and a positive temperature dependence of the rate constants were observed. The Arrhenius expressions of fenthion and parathion were k2 = (1.34 ± 0.48) × 10-9exp[-(1432.59 ± 105.29)/T] and k2 = (1.96 ± 1.38) × 10-9exp[-(1619.98 ± 222.02)/T], respectively, and their overall activation energy was estimated to be (11.88 ± 0.87) and (13.48 ± 1.83) kJ/mol. The experimental results will update the kinetic data of fenthion and parathion in the atmosphere and be helpful to further understand their atmospheric transportation processes.


Assuntos
Paration , Praguicidas , Fention , Compostos Organofosforados , Cinética , Radical Hidroxila
16.
J Am Chem Soc ; 145(31): 17125-17135, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37505921

RESUMO

Proteins have been adopted by natural living organisms to create robust bioadhesive materials, such as biofilms and amyloid plaques formed in microbes and barnacles. In these cases, ß-sheet stacking is recognized as a key feature that is closely related to the interfacial adhesion of proteins. Herein, we challenge this well-known recognition by proposing an α-helix-mediated interfacial adhesion model for proteins. By using bovine serum albumin (BSA) as a model protein, it was discovered that the reduction of disulfide bonds in BSA results in random coils from unfolded BSA dragging α-helices to gather at the solid/liquid interface (SLI). The hydrophobic residues in the α-helix then expose and break through the hydration layer of the SLI, followed by the random deposition of hydrophilic and hydrophobic residues to achieve interfacial adhesion. As a result, the first assembled layer is enriched in the α-helix secondary structure, which is then strengthened by intermolecular disulfide bonds and further initiates stepwise layering protein assembly. In this process, ß-sheet stacking is transformed from the α-helix in a gradually evolving manner. This finding thus indicates a valuable clue that ß-sheet-featuring amyloid may form after the interfacial adhesion of proteins. Furthermore, the finding of the α-helix-mediated interfacial adhesion model of proteins affords a unique strategy to prepare protein nanofilms with a well-defined layer number, presenting robust and modulable adhesion on various substrates and exhibiting good resistance to acid, alkali, organic solvent, ultrasonic, and adhesive tape peeling.


Assuntos
Dissulfetos , Soroalbumina Bovina , Conformação Proteica em alfa-Hélice , Soroalbumina Bovina/química , Solventes , Conformação Proteica em Folha beta
17.
J Environ Manage ; 345: 118645, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499414

RESUMO

Clarifying the driving forces of O3 and fine particulate matter (PM2.5) co-pollution is important to perform their synergistic control. This work investigated the co-pollution of O3 and PM2.5 in Hainan Province using an observation-based model and explainable machine learning. The O3 and PM2.5 pollution that occurs in winter is affected by the wintertime East Asian Monsoon. The O3 formation shifts from a NOx-limited regime with a low O3 production rate (PO3) in the non-pollution season to a transition regime with a high PO3 in the pollution season due to an increase in NOx concentrations. Increased O3 and atmospheric oxidation capacity promote the conversion from gas-phase precursors to aerosols. Meanwhile, the high concentration of particulate nitrate favors HONO formation via photolysis, in turn facilitating O3 production. Machine learning reveals that NOx promotes O3 and PM2.5 co-pollution during the pollution period. The PO3 shows an upward trend at the observation site from 2018 to 2022 due to the inappropriate reduction of volatile organic compounds (VOCs) and NOx in the upwind areas. Our results suggest that a deep reduction of NOx should benefit both O3 and PM2.5 pollution control in Hainan and bring new insights into improving air quality in other regions of China in the future.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Monitoramento Ambiental/métodos , Material Particulado/análise , Compostos Orgânicos Voláteis/análise
18.
Phys Rev Lett ; 130(26): 263601, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37450830

RESUMO

Exceptional points (EPs) in non-Hermitian systems have recently attracted wide interest and spawned intriguing prospects for enhanced sensing. However, EPs have not yet been realized in thermal atomic ensembles, which is one of the most important platforms for quantum sensing. Here we experimentally observe EPs in multilevel thermal atomic ensembles and realize enhanced sensing of the magnetic field for 1 order of magnitude. We take advantage of the rich energy levels of atoms and construct effective decays for selected energy levels by employing laser coupling with the excited state, yielding unbalanced decay rates for different energy levels, which finally results in the existence of EPs. Furthermore, we propose the optical polarization rotation measurement scheme to detect the splitting of the resonance peaks, which makes use of both the absorption and dispersion properties and shows an advantage with enhanced splitting compared with the conventional transmission measurement scheme. Additionally, in our system both the effective coupling strength and decay rates are flexibly adjustable, and thus the position of the EPs are tunable, which expands the measurement range. Our Letter not only provides a new controllable platform for studying EPs and non-Hermitian physics, but also provide new ideas for the design of EP-enhanced sensors and opens up realistic opportunities for practical applications in the high-precision sensing of magnetic field and other physical quantities.


Assuntos
Campos Magnéticos , Física , Vibração
19.
Langmuir ; 39(24): 8503-8515, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37284830

RESUMO

Catalytic oxidation has been extensively studied as a promising technology for the removal of toluene from industrial waste gases and indoor air. However, the debate regarding the oxidation mechanism is far from resolved. CexMn1-xO2 catalysts with different mixing ratios are prepared by the sol-gel method and found to exhibit better catalytic activities for toluene oxidation than a single oxide. Characterizations and theoretical calculations reveal that the doped Mn increases the number of oxygen vacancies and the ability of oxygen vacancies to activate aromatic rings, which promotes the rate-determining step of toluene oxidation, i.e., ring-opening reactions. The oxidation products detected by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and Vocus proton transfer reaction mass spectrometry (Vocus-PTR-MS) show that the doped Mn significantly improves the ring-opening efficiency and subsequently yields more short-chain products, such as pyruvic acid and acetic acid. A comprehensive oxidation pathway of toluene is refined in this work.

20.
Nat Commun ; 14(1): 2816, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198161

RESUMO

Urethral stricture secondary to urethral injury, afflicting both patients and urologists, is initiated by excessive deposition of extracellular matrix in the submucosal and periurethral tissues. Although various anti-fibrotic drugs have been applied to urethral stricture by irrigation or submucosal injection, their clinical feasibility and effectiveness are limited. Here, to target the pathological state of the extracellular matrix, we design a protein-based nanofilm-controlled drug delivery system and assemble it on the catheter. This approach, which integrates excellent anti-biofilm properties with stable and controlled drug delivery for tens of days in one step, ensures optimal efficacy and negligible side effects while preventing biofilm-related infections. In a rabbit model of urethral injury, the anti-fibrotic catheter maintains extracellular matrix homeostasis by reducing fibroblast-derived collagen production and enhancing metalloproteinase 1-induced collagen degradation, resulting in a greater improvement in lumen stenosis than other topical therapies for urethral stricture prevention. Such facilely fabricated biocompatible coating with antibacterial contamination and sustained-drug-release functionality could not only benefit populations at high risk of urethral stricture but also serve as an advanced paradigm for a range of biomedical applications.


Assuntos
Estreitamento Uretral , Animais , Coelhos , Estreitamento Uretral/tratamento farmacológico , Estreitamento Uretral/patologia , Estreitamento Uretral/prevenção & controle , Cateteres Urinários , Colágeno/metabolismo , Fibrose , Matriz Extracelular/metabolismo , Sistemas de Liberação de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...