Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(8): e0307779, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39150929

RESUMO

OBJECTIVE: The main pathological change of myocarditis is an inflammatory injury of cardiomyocytes. Long noncoding RNAs (lncRNAs) are closely related to inflammation, and our previous study showed that differential expression of lncRNAs is associated with myocarditis. This study aimed to investigate the impact of lncRNAs on the onset of myocarditis. METHODS: RNA expression was measured by quantitative reverse-transcription polymerase chain reaction (RT-qPCR). Lipopolysaccharide (LPS) was used to induce inflammation in human cardiomyocytes (HCMs). The expression of inflammatory cytokines and myocardial injury markers was detected by enzyme-linked immunosorbent assay (ELISA) and RT-qPCR. Cell viability and apoptosis were measured by the cell counting kit-8 assay and flow cytometry. The binding force between lncRNA NONHSAT122636.2 and microRNA miRNA-2110 was detected using the dual-luciferase assay. RESULTS: NONHSAT122636.2 was dynamically expressed in patients with myocarditis and negatively correlated with inflammation severity. The overexpression of NONHSAT122636.2 improved inflammatory injury in LPS-stimulated HCMs. The study observed that there was a weak binding force between NONHSAT122636.2 and miR-2110. CONCLUSION: NONHSAT122636.2 attenuates myocardial inflammation and apoptosis in myocarditis. Additionally, its expression decreases in the peripheral blood of children suffering from myocarditis and in patients who are diagnosed for the first time showing higher diagnostic sensitivity and specificity. This decrease is negatively correlated with the degree of inflammation. Overall, the study suggests that NONHSAT122636.2 can be exploited as a potential diagnostic biomarker for pediatric myocarditis.


Assuntos
Apoptose , MicroRNAs , Miocardite , Miócitos Cardíacos , RNA Longo não Codificante , Miocardite/genética , Miocardite/patologia , Miocardite/metabolismo , RNA Longo não Codificante/genética , Humanos , Apoptose/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Masculino , Feminino , Lipopolissacarídeos/farmacologia , Criança , Inflamação/genética , Inflamação/patologia , Pré-Escolar , Citocinas/metabolismo , Citocinas/genética
2.
Int J Biol Macromol ; 258(Pt 1): 128889, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123039

RESUMO

Color-changing fibers have attracted much attention for their wide applications in camouflage, security warnings, and anti-counterfeiting. The inorganic color-changing material tungsten trioxide (WO3) has been widely investigated for its good stability, controllability, and ease of synthesis. In this study, photochromic alginate fibers (WO3@Ca-Alg) were prepared by incorporating UV-responsive hybrid tungsten trioxide nanoparticles in the fiber production process. The prepared photochromic alginate fibers changed from white to dark blue after 30 min of UV irradiation and returned to their original color after 64 h. It can be seen that WO3@Ca-Alg has the advantage of long color duration. The strength of this fiber reached 2.61 cN/dtex and the limiting oxygen index (LOI) was 40.9 %, which indicates that the fiber exhibited mechanical resistance and flame-retardant properties. After the cross-linking of WO3@Ca-Alg by sodium tetraborate, a new core-shell structure was generated, which was able to encapsulate tungsten trioxide in it, thus reducing the amount of tungsten trioxide loss, and its salt and washing resistance was greatly improved. This photochromic alginate fiber can be mass produced and spun into yarn.


Assuntos
Retardadores de Chama , Nanopartículas , Tungstênio , Alginatos , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA