Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 826
Filtrar
1.
J Biol Chem ; : 107463, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876304

RESUMO

Chemotherapeutic agents for treating colorectal cancer primarily induce apoptosis in tumor cells. The ubiquitin-proteasome system (UPS) is critical for apoptosis regulation. Deubiquitinating enzymes (DUBs) remove ubiquitin from substrates to reverse ubiquitination. Although over 100 DUB members have been discovered, the biological functions of only a small proportion of DUBs have been characterized. Here, we aimed to systematically identify the DUBs that contribute to the development of colorectal cancer. Among the DUBs, ubiquitin-specific protease 36 (USP36), is upregulated in colorectal cancer. We showed that the knockdown of USP36 induces intrinsic and extrinsic apoptosis. Through gene silencing and coimmunoprecipitation techniques, we identified survivin and cIAP1 as USP36 targets. Mechanistically, USP36 binds and removes lysine-11 (K11)-linked ubiquitin chains from cIAP1 and lysine-48 (K48)-linked ubiquitin chains from survivin to abolish protein degradation. Overexpression of USP36 disrupts the formation of the XIAP-Smac complex and promotes RIPK1 ubiquitination, validating USP36 as an inhibitor to intrinsic and extrinsic apoptosis through deubiquitinating survivin and cIAP1. Therefore, our results suggest that USP36 is involved in colorectal cancer progression and is a potential therapeutic target.

2.
BMJ Open ; 14(6): e078687, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858136

RESUMO

OBJECTIVES: This study aims to investigate the diagnostic value of heparin-binding protein (HBP) in sepsis and develop a sepsis diagnostic model incorporating HBP with key biomarkers and disease-related scores for rapid, and accurate diagnosis of sepsis in the intensive care unit (ICU). DESIGN: Clinical retrospective cross-sectional study. SETTING: A comprehensive teaching tertiary hospital in China. PARTICIPANTS: Adult patients (aged ≥18 years) who underwent HBP testing or whose blood samples were collected when admitted to the ICU. MAIN OUTCOME MEASURES: HBP, C reactive protein (CRP), procalcitonin (PCT), white blood cell count (WBC), interleukin-6 (IL-6), lactate (LAC), Acute Physiology and Chronic Health Evaluation II (APACHE II) and Sequential Organ Failure Assessment (SOFA) score were recorded. RESULTS: Between March 2019 and December 2021, 326 patients were enrolled in this study. The patients were categorised into a non-infection group (control group), infection group, sepsis group and septic shock group based on the final diagnosis. The HBP levels in the sepsis group and septic shock group were 45.7 and 69.0 ng/mL, respectively, which were significantly higher than those in the control group (18.0 ng/mL) and infection group (24.0 ng/mL) (p<0.001). The area under the curve (AUC) value of HBP for diagnosing sepsis was 0.733, which was lower than those corresponding to PCT, CRP and SOFA but higher than those of IL-6, LAC and APACHE II. Multivariate logistic regression analysis identified HBP, PCT, CRP, IL-6 and SOFA as valuable indicators for diagnosing sepsis. A sepsis diagnostic model was constructed based on these indicators, with an AUC of 0.901, a sensitivity of 79.7% and a specificity of 86.9%. CONCLUSIONS: HBP could serve as a biomarker for the diagnosis of sepsis in the ICU. Compared with single indicators, the sepsis diagnostic model constructed using HBP, PCT, CRP, IL-6 and SOFA further enhanced the diagnostic performance of sepsis.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Biomarcadores , Proteínas Sanguíneas , Proteína C-Reativa , Unidades de Terapia Intensiva , Escores de Disfunção Orgânica , Sepse , Humanos , Estudos Retrospectivos , Estudos Transversais , Feminino , Masculino , Biomarcadores/sangue , Pessoa de Meia-Idade , Sepse/diagnóstico , Sepse/sangue , China , Idoso , Proteínas Sanguíneas/análise , Proteína C-Reativa/análise , Proteína C-Reativa/metabolismo , Peptídeos Catiônicos Antimicrobianos/sangue , Pró-Calcitonina/sangue , APACHE , Interleucina-6/sangue , Adulto , Curva ROC , Ácido Láctico/sangue
3.
Sci Total Environ ; 935: 173418, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38788938

RESUMO

Flupyradifurone (FPF) has been reported to have a potential risk to terrestrial and aquatic ecosystems. In the present study, the effects of chronic FPF exposure on bees were systematically investigated at the individual behavioral, tissue, cell, enzyme activity, and the gene expression levels. Chronic exposure (14 d) to FPF led to reduced survival (12 mg/L), body weight gain (4 and 12 mg/L), and food utilization efficiency (4 and 12 mg/L). Additionally, FPF exposure (12 mg/L) impaired sucrose sensitivity and memory of bees. Morphological analysis revealed significant cellular and subcellular changes in brain neurons and midgut epithelial cells, including mitochondrial damage, nuclear disintegration, and apoptosis. FPF exposure (4 and 12 mg/L) led to oxidative stress, as evidenced by increased lipid peroxidation and alterations in antioxidant enzyme activity. Notably, gene expression analysis indicated significant dysregulation of apoptosis, immune, detoxification, sucrose responsiveness and memory-related genes, suggesting the involvement of different pathways in FPF-induced toxicity. The multiple stresses and potential mechanisms described here provide a basis for determining the intrinsic toxicity of FPF.


Assuntos
Estresse Oxidativo , Animais , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Fisiológico , 4-Butirolactona/toxicidade , 4-Butirolactona/análogos & derivados
4.
Int J Older People Nurs ; 19(3): e12613, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701237

RESUMO

BACKGROUND: The prevalence of essential hypertension contributed significantly to morbidity and mortality rates. Acupuncture-related therapies were commonly employed in hypertension treatment. Nevertheless, a lack of conclusive evidence left uncertainties regarding the optimal strategies for managing hypertensive populations. OBJECTIVES: Conduct a comprehensive systematic review to evaluate the existing clinical evidence about the effectiveness of acupuncture and moxibustion-related therapies in managing hypertension, by employing network meta-analysis techniques. METHODS: A comprehensive electronic search was conducted across n of databases. This search covered studies available up to October 2022. Randomized controlled trials assessing acupuncture and moxibustion-related therapies in managing hypertension based on traditional Chinese medicine were screened. Primary outcome measures included the antihypertensive effectiveness rate, variations in blood pressure and the incorporation of Traditional Chinese Medicine (TCM) syndrome manifestations. The review follows the guidelines outlined in the PRISMA statement. RESULTS: We identified a total of 24 trials with 1867 patients, which evaluated the efficacy of various acupuncture-related therapies for hypertension management. Network meta-analysis showed that moxibustion and auricular point sticking combined with medication therapy had the best effect in terms of antihypertensive effective rate (medication + moxibustion + auricular pressure vs. medication = 1.29 [1.09, 1.54]; sucra = 85.9, p < .05) and hypertension symptom improvement (medication + moxibustion + auricular pressure vs. medication = -1.55 [-2.98, -0.13]; sucra = 96.1, p < .05). Acupuncture combined with moxibustion combined with medication therapy had the best effect in reducing systolic pressure (medication + moxibustion + acupuncture vs. medication = -8.50 [-10.19, -6.80]; sucra = 100, p < .05) and diastolic blood pressure (medication + moxibustion + acupuncture versus medication = -4.72 [-6.71, -2.72]; sucra = 99.71, p < 0.05). CONCLUSIONS: Network meta-analysis suggested that the combined use of moxibustion and auricular point application in conjunction with drug therapy showed the highest likelihood of being the most effective treatment in terms of antihypertensive efficiency rates and improvement in hypertension symptoms. Furthermore, the combination of acupuncture and moxibustion alongside drug treatment emerged as the most promising approach for reducing systolic blood pressure and diastolic blood pressure. Limited by the methodological quality and quantity of the included studies, the results need to be interpreted with caution. It is necessary to conduct more high-quality randomized controlled trials of acupuncture-related therapies for the adjuvant treatment of hypertension in the future. IMPLICATIONS FOR PRACTICE: Clinicians can use acupuncture-related therapies to inform their treatment decisions and potentially incorporate acupuncture-related therapies into their hypertension management protocols.


Assuntos
Terapia por Acupuntura , Hipertensão , Metanálise em Rede , Humanos , Terapia por Acupuntura/métodos , Hipertensão/terapia , Moxibustão/métodos , Medicina Tradicional Chinesa/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto , Anti-Hipertensivos/uso terapêutico
5.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(4): 353-357, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38813627

RESUMO

OBJECTIVE: To investigate the predictive value of left ventricular global longitudinal peak strain (GLPS) for the prognosis of septic patients. METHODS: A prospective cohort study was conducted. Patients diagnosed with sepsis and admitted to the intensive care unit (ICU) of the First Affiliated Hospital, Sun Yat-sen University from December 2018 to November 2019 were enrolled. The patient characteristics, cardiac ultrasound parameters [left ventricular ejection fraction (LVEF), right ventricular ejection fraction (RVEF), four-dimensional ejection fraction (4DEF), GLPS] and cardiac biomarkers [N-terminal pro-brain natriuretic peptide (NT-proBNP), cardiac troponin T (cTnT)] within 24 hours of ICU admission, organ support therapies, severity of illness, and prognostic indicators were documented. The differences in clinical parameters between patients with varying outcomes during ICU hospitalization were assessed. Pearson correlation analysis was employed to explore the correlation between GLPS and other cardiac systolic parameters, as well as the associations between various cardiac systolic parameters and sequential organ failure assessment (SOFA) score. Receiver operator characteristic curve (ROC curve) was drawn to analyze the predictive capacity of cardiac ultrasound parameters and cardiac biomarkers for death during ICU hospitalization in septic patients. RESULTS: A total of 50 septic patients were enrolled, with 40 surviving and 10 dying during ICU hospitalization, resulting in a mortality of 20.0%. All patients in the death group were male. Compared with the survival group, the patients in the death group were older, had a higher prevalence of diabetes mellitus, and received continuous renal replacement therapy (CRRT) more frequently, additionally, they exhibited more severe illness and had longer length of ICU stay. The levels of GLPS and cTnT in the death group were significantly elevated as compared with the survival group [GLPS: -7.1% (-8.5%, -7.0%) vs. -12.1% (-15.5%, -10.4%), cTnT (µg/L): 0.07 (0.05, 0.08) vs. 0.03 (0.02, 0.13), both P < 0.05]. However, no statistically significant difference was found in other cardiac ultrasound parameters or cardiac biomarkers between the two groups. Pearson correlation analysis revealed a negative correlation between GLPS and LVEF (r = -0.377, P = 0.014) and 4DEF (r = -0.697, P = 0.000), while no correlation was found with RVEF (r = -0.451, P = 0.069). GLPS demonstrated a positive correlation with SOFA score (r = 0.306, P = 0.033), while LVEF (r = 0.112, P = 0.481), RVEF (r = -0.134, P = 0.595), and 4DEF (r = -0.251, P = 0.259) showed no significant correlation with SOFA score. ROC curve analysis indicated that the area under the ROC curve (AUC) of GLPS for predicting death during ICU hospitalization in septic patients was higher than other cardiac systolic parameters, including LVEF, RVEF, and 4DEF, as well as cardiac biomarkers NT-proBNP and cTnT (0.737 vs. 0.628, 0.556, 0.659, 0.580 and 0.724). With an optimal cut-off value of -14.9% for GLPS, the sensitivity and negative predictive value reached to 100%. CONCLUSIONS: GLPS < -14.9% within 24 hours of ICU admission in septic patients indicated a reduced risk of death risk during ICU hospitalization, while also correlating with the severity of organ dysfunction in this patient population.


Assuntos
Unidades de Terapia Intensiva , Sepse , Humanos , Estudos Prospectivos , Prognóstico , Sepse/diagnóstico , Sepse/mortalidade , Sepse/fisiopatologia , Troponina T/sangue , Ventrículos do Coração/fisiopatologia , Ventrículos do Coração/diagnóstico por imagem , Biomarcadores/sangue , Ecocardiografia , Função Ventricular Esquerda , Volume Sistólico , Masculino , Feminino , Peptídeo Natriurético Encefálico/sangue , Curva ROC , Fragmentos de Peptídeos/sangue , Valor Preditivo dos Testes , Pessoa de Meia-Idade
6.
Res Sq ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38798691

RESUMO

Background: Neoadjuvant therapy (NAT) is increasingly being used for pancreatic ductal adenocarcinoma (PDAC) treatment. However, its specific effects on carcinoma cells and the tumor microenvironment (TME) are not fully understood. This study aims to investigate how NAT differentially impacts PDAC's carcinoma cells and TME. Methods: Spatial transcriptomics was used to compare gene expression profiles in carcinoma cells and the TME between 23 NAT-treated and 13 NAT-naïve PDAC patients, correlating with their clinicopathologic features. Analysis of an online single-nucleus RNA sequencing (snRNA-seq) dataset was performed for validation of the specific cell types responsible for NAT-induced gene expression alterations. Results: NAT not only induces apoptosis and inhibits proliferation in carcinoma cells but also significantly remodels the TME. Notably, NAT induces a coordinated upregulation of multiple key complement genes (C3, C1S, C1R, C4B and C7) in the TME, making the complement pathway one of the most significantly affected pathways by NAT. Patients with higher TME complement expression following NAT exhibit improved overall survival. These patients also exhibit increased immunomodulatory and neurotrophic cancer-associated fibroblasts (CAFs); more CD4+ T cells, monocytes, and mast cells; and reduced immune exhaustion gene expression. snRNA-seq analysis demonstrates C3 complement was specifically upregulated in CAFs but not in other stroma cell types. Conclusions: NAT can enhance complement production and signaling within the TME, which is associated with reduced immunosuppression in PDAC. These findings suggest that local complement dynamics could serve as a novel biomarker for prognosis, evaluating treatment response and resistance, and guiding therapeutic strategies in NAT-treated PDAC patients.

7.
Phys Chem Chem Phys ; 26(16): 12331-12344, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38598177

RESUMO

Oxaloacetic acid (OAA) is a ß-ketocarboxylic acid, which plays an important role as an intermediate in some metabolic pathways, including the tricarboxylic acid cycle, gluconeogenesis and fatty acid biosynthesis. Animal studies have indicated that supplementing oxaloacetic acid shows an increase of lifespan and other substantial health benefits including mitochondrial DNA protection, and protection of retinal, neural and pancreatic tissues. Most of the chemical transformations of OAA in the metabolic pathways have been extensively studied; however, the understanding of decarboxylation of OAA at the atomic level is relatively lacking. Here, we carried out MD simulations and combined quantum mechanical/molecular mechanical (QM/MM) calculations as an example to systematically elucidate the binding modes, keto-enol tautomerization and decarboxylation of OAA in the active site of macrophomate synthase (MPS), which is a Mg(II)-dependent bifunctional enzyme that catalyzes both the decarboxylation of OAA and [4+2] cycloaddition of 2-pyrone with the decarboxylated intermediate of OAA (pyruvate enolate). On the basis of our calculations, it was found that the Mg2+-coordinated oxaloacetate may exist in enol forms and keto forms. The four keto forms can be transformed into each other by simply rotating the C2-C3 single bond, nevertheless, the keto-enol tautomerization strictly requires the assistance of pocket water molecules. In addition, the decarboxylation is stereo-electronically controlled, i.e., it is the relative orientation of the terminal carboxyl anion that determines the rate of decarboxylation. As such, the chemistry of oxaloacetate in the active site of MPS is complex. On one hand, the most stable binding mode (K-I) may undergo enol-keto tautomerization to isomerize to the enol form, which may further react with the second substrate; on the other hand, K-I may isomerize to another binding mode K-II to proceed decarboxylation to generate pyruvate enolate and CO2. Starting from K-I, the enol-keto tautomerization corresponds to a barrier of 16.2 kcal mol-1, whereas the decarboxylation is associated with an overall barrier of 19.7 kcal mol-1. These findings may provide useful information for understanding the chemistry of OAA and the catalysis of related enzymes, and they are basically in agreement with the available experimental kinetic data.


Assuntos
Ascomicetos , Complexos Multienzimáticos , Domínio Catalítico , Descarboxilação , Simulação de Dinâmica Molecular , Ácido Oxaloacético/metabolismo , Ácido Oxaloacético/química , Teoria Quântica , Estereoisomerismo , Complexos Multienzimáticos/química , Ascomicetos/enzimologia
8.
Adv Sci (Weinh) ; 11(20): e2305832, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564766

RESUMO

Effective presentation of antigens by dendritic cells (DC) is essential for achieving a robust cytotoxic T lymphocytes (CTLs) response, in which cDC1 is the key DC subtype for high-performance activation of CTLs. However, low cDC1 proportion, complex process, and high cost severely hindered cDC1 generation and application. Herein, the study proposes an in situ cDC1 recruitment and activation strategy with simultaneous inhibiting cancer stemness for inducing robust CTL responses and enhancing the anti-tumor effect. Fms-like tyrosine kinase 3 ligand (FLT3L), Poly I:C, and Nap-CUM (NCUM), playing the role of cDC1 recruitment, cDC1 activation, inducing antigen release and decreasing tumor cell stemness, respectively, are co-encapsulated in an in situ hydrogel vaccine (FP/NCUM-Gel). FP/NCUM-Gel is gelated in situ after intra-tumoral injection. With the near-infrared irradiation, tumor cell immunogenic cell death occurred, tumor antigens and immunogenic signals are released in situ. cDC1 is recruited to tumor tissue and activated for antigen cross-presentation, followed by migrating to lymph nodes and activating CTLs. Furthermore, tumor cell stemness are inhibited by napabucasin, which can help CTLs to achieve comprehensive tumor killing. Collectively, the proposed strategy of cDC1 in situ recruitment and activation combined with stemness inhibition provides great immune response and anti-tumor potential, providing new ideas for clinical tumor vaccine design.


Assuntos
Apresentação de Antígeno , Vacinas Anticâncer , Células Dendríticas , Hidrogéis , Vacinas Anticâncer/imunologia , Camundongos , Animais , Células Dendríticas/imunologia , Apresentação de Antígeno/imunologia , Linfócitos T Citotóxicos/imunologia , Modelos Animais de Doenças , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL
9.
Sci Rep ; 14(1): 9445, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658691

RESUMO

The carbon cycle in soil is significantly influenced by soil microbes. To investigate the vertical distribution of the dominant groups in agricultural soil and the carbon metabolic diversity of soil bacteria, 45 soil samples from the 0 ~ 50 cm soil layer in Hunan tobacco-rice multiple cropping farmland were collected in November 2017, and the carbon diversity of the soil bacterial community, bacterial community composition and soil physical and chemical properties were determined. The results showed that the carbon metabolic capabilities and functional diversity of the soil bacterial community decreased with depth. The three most widely used carbon sources for soil bacteria were carbohydrates, amino acids, and polymers. The dominant bacterial groups in surface soil (such as Chloroflexi, Acidobacteriota, and Bacteroidota) were significantly positively correlated with the carbon metabolism intensity. The alkali-hydrolysable nitrogen content, soil bulk density and carbon-nitrogen ratio were the key soil factors driving the differences in carbon metabolism of the soil bacterial communities in the different soil layers.


Assuntos
Bactérias , Carbono , Fazendas , Microbiologia do Solo , Solo , Carbono/metabolismo , Carbono/análise , Bactérias/metabolismo , Bactérias/classificação , Solo/química , Biodiversidade , Nitrogênio/metabolismo , Nitrogênio/análise , Ciclo do Carbono , Microbiota , Agricultura
10.
Sci Total Environ ; 927: 172309, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599408

RESUMO

The application of molecularly imprinted material (MIM) is widely employed as a material for removing phenolic pollutants from the water environment, owing to its exceptional capacity for selective adsorption and high sensitivity. In this paper, the preparation principle, bonding types, and preparation methods of MIM have been comprehensively introduced. Meanwhile, according to the binding type of MIM with phenolic pollutants, three categories of hydroxyl bonding, hydroxyl carboxyl bonding, and hydroxyl nitro bonding were carried out to explain its application to phenolic pollutants. Strategies for addressing the challenges of selective instability, high regeneration costs, and template leakage in MIM applications were summarized. These strategies encompassed the introduction of superior carriers, enhancements in preparation processes, and the utilization of molecular dynamics simulation-assisted technology. Finally, the prospects in the three aspects of material preparation, process coupling, and recycling. In summary, this paper has demonstrated the potential of utilizing MIM for the selective treatment of phenolic pollutants from the water environment.

11.
Inorg Chem ; 63(15): 6776-6786, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572830

RESUMO

The heme-containing chlorite dismutases catalyze the rapid and efficient decomposition of chlorite (ClO2-) to yield Cl- and O2, and the catalytic efficiency of chlorite dismutase from Dechloromonas aromatica (DaCld) in catalyzing the decomposition of bromite (BrO2-) was dependent on pH, which was supposed to be caused by the conversion of active Cpd I to the inactive Cpd II by proton-coupled electron transfer (PCET) from the pocket Tyr118 to the propionate side chain of heme at high pH. However, the direct evidence of PCET and how the pH affects the efficiency of DaCld, as well as whether Cpd II is really inactive, are still poorly understood. Here, on the basis of the high-resolution crystal structures, the computational models in both acidic (pH 5.0) and alkaline (pH 9.0) environments were constructed, and a series of quantum mechanical/molecular mechanical calculations were performed. On the basis of our calculation results, the O-Br bond cleavage of BrO2- always follows the homolytic mode to generate Cpd II rather than Cpd I. It is different from the O-O cleavage of O2/H2O2 or peracetic acid catalyzed by the other heme-containing enzymes. Thus, in the subsequent O-O rebound reaction, it is the Fe(IV)═O in Cpd II that combines with the O-Br radical. Because the porphyrin ring in Cpd II does not bear an unpaired electron, the previously suggested PCET from Tyr118 to the propionate side chain of heme was not theoretically recognized in an alkaline environment. In addition, the O-O rebound step in an alkaline solution corresponds to an energy barrier that is larger than that in an acidic environment, which can well explain the pH dependence of the activity of DaCld. In addition, the protonation state of the propionic acid side chains of heme and the surrounding hydrogen bond networks were calculated to have a significant impact on the barriers of the O-O rebound step, which is mainly achieved by affecting the reactivity of the Fe(IV)═O group in Cpd II. In an acidic environment, the relatively weaker coordination of the O2 atom to Fe leads to its higher reactivity toward the O-O rebound reaction. These observations may provide useful information for understanding the catalysis of chlorite dismutases.


Assuntos
Betaproteobacteria , Cloretos , Peróxido de Hidrogênio , Oxirredutases , Propionatos , Peróxido de Hidrogênio/química , Catálise , Prótons , Concentração de Íons de Hidrogênio , Heme/química
12.
Water Res ; 256: 121627, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642539

RESUMO

The complex composition of coal chemical wastewater (CCW), marked by numerous highly toxic aromatic compounds, induces the destabilization of the biochemical treatment system, leading to suboptimal treatment efficacy. In this study, a biochemical treatment system was established to efficiently degrade aromatic compounds by quantitatively regulating the dosage of co-metabolized substrates (specifically, the chemical oxygen demand (COD) Glucose: COD Sodium acetate = 3:1, 1:3, and 1:1). The findings demonstrated that the system achieved optimal performance under the condition that the ratio of COD Glucose to COD Sodium acetate was 3:1. When the co-metabolized substrate was added to the system at an optimal ratio, examination of pollutant removal and cumulative effects revealed that the removal efficiencies for COD and total organic carbon (TOC) reached 94.61 % and 86.40 %, respectively. The removal rates of benzene series, nitrogen heterocyclic compounds, polycyclic aromatic hydrocarbons, and phenols were 100 %, 100 %, 63.58 %, and 94.12 %, respectively. Research on the physiological response of microbial cells showed that, under optimal ratio regulation, co-metabolic substrates led to a substantial rise in microbial extracellular polymeric substances (EPS) secretion, particularly extracellular proteins. When the system reached the end of its operation, the contents of loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) for proteins in the optimal group were 7.12 mg/g-SS and 152.28 mg/g-SS, respectively. Meanwhile, the ratio of α-Helix / (ß-Sheet + Random coil) and the proportion of intermolecular interaction forces were also increased in the optimal group. At system completion, the ratio of α-Helix / (ß-Sheet + Random coil) reached 0.717 (LB-EPS) and 0.618 (TB-EPS), respectively. Additionally, the proportion of intermolecular interaction forces reached 74.83 % (LB-EPS) and 55.03 % (TB-EPS). An in-depth analysis of the metabolic regulation of microorganisms indicated that the introduction of optimal ratios of co-metabolic substrates contributed to a noteworthy upregulation in the expression of Catechol 2,3-dioxygenase (C23O) and Dehydrogenase (DHA). The expression levels of C23O and DHA were measured at 0.029 U/mg Pro·g MLSS and 75.25 mg TF·(g MLSS·h)-1 (peak value), respectively. Correspondingly, enrichment of aromatic compound-degrading bacteria, including Thauera, Saccharimonadales, and Candidatus_Competibacter, occurred, along with the upregulation of associated functional genes such as Catechol 1,2-dioxygenase, Catechol 2,3-dioxygenase, Protocatechuate 3,4-dioxygenase, and Protocatechuate 4,5-dioxygenase. Considering the intricate system of multiple coexisting aromatic compounds in real CCW, this study not only obtained an optimal ratio for carbon source addition but also enhanced the efficient utilization of carbon sources and improved the capability of the system to effectively degrade aromatic compounds. Additionally, this paper established a theoretical foundation for metabolic regulation and harmless treatment within the biochemical treatment of intricate systems, exemplified by real CCW.


Assuntos
Biodegradação Ambiental , Carbono , Carvão Mineral , Águas Residuárias , Águas Residuárias/química , Carbono/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Análise da Demanda Biológica de Oxigênio , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
13.
J Nanobiotechnology ; 22(1): 137, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553725

RESUMO

Immune checkpoint inhibitors (ICIs) combined with antiangiogenic therapy have shown encouraging clinical benefits for the treatment of unresectable or metastatic hepatocellular carcinoma (HCC). Nevertheless, therapeutic efficacy and wide clinical applicability remain a challenge due to "cold" tumors' immunological characteristics. Tumor immunosuppressive microenvironment (TIME) continuously natural force for immune escape by extracellular matrix (ECM) infiltration, tumor angiogenesis, and tumor cell proliferation. Herein, we proposed a novel concept by multi-overcoming immune escape to maximize the ICIs combined with antiangiogenic therapy efficacy against HCC. A self-delivery photothermal-boosted-NanoBike (BPSP) composed of black phosphorus (BP) tandem-augmented anti-PD-L1 mAb plus sorafenib (SF) is meticulously constructed as a triple combination therapy strategy. The simplicity of BPSP's composition, with no additional ingredients added, makes it easy to prepare and presents promising marketing opportunities. (1) NIR-II-activated BPSP performs photothermal therapy (PTT) and remodels ECM by depleting collagen I, promoting deep penetration of therapeutics and immune cells. (2) PTT promotes SF release and SF exerts anti-vascular effects and down-regulates PD-L1 via RAS/RAF/ERK pathway inhibition, enhancing the efficacy of anti-PD-L1 mAb in overcoming immune evasion. (3) Anti-PD-L1 mAb block PD1/PD-L1 recognition and PTT-induced ICD initiates effector T cells and increases response rates of PD-L1 mAb. Highly-encapsulated BPSP converted 'cold' tumors into 'hot' ones, improved CTL/Treg ratio, and cured orthotopic HCC tumors in mice. Thus, multi-overcoming immune escape offers new possibilities for advancing immunotherapies, and photothermal/chemical/immune synergistic therapy shows promise in the clinical development of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Antígeno B7-H1/metabolismo , Terapia Fototérmica , Sorafenibe/farmacologia , Linhagem Celular Tumoral , Microambiente Tumoral
14.
Eur J Med Chem ; 268: 116284, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442430

RESUMO

NLRP3 inflammatory vesicles are a polymer of cellular innate immunity composed of a pair of proteins. The continuous activation of NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammatory vesicles induces the occurrence and enhancement of inflammatory response. In this study, a series of 3, 4-dihydronaphthalene-1(2H)-one derivatives (DHNs, 6a-u, 7a-e, 8a-n) were synthesized and characterized by NMR and HRMS. We evaluated the cytotoxicity and anti-inflammatory activity of all compounds in vitro, and selected 7a substituted by 7-Br in A-ring and 2-pyridylaldehyde in C-ring as effective lead compounds. Specifically, 7a can block the assembly and activation of NLRP3 inflammasome by down-regulating the expression of NLPR3 and apoptosis-associated speck-like protein containing a CARD (ASC), and inhibiting the production of reactive oxygen species (ROS) and other inflammatory mediators. In addition, 7a inhibits the phosphorylation of inhibitor kappa B alpha (IκBα) and NF-κB/p65 and the nuclear translocation of p65, thereby inhibiting nuclear factor kappa-B (NF-κB) signaling. Molecular docking analysis confirmed that 7a could reasonably bind the active sites of NLRP3, ASC and p65 proteins. Therefore, 7a is predicted as a potential NLRP3 inflammatory vesicle inhibitor and deserves further research and development.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/metabolismo , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia
15.
ACS Appl Bio Mater ; 7(2): 1311-1316, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38303492

RESUMO

Nanostructures with controlled shapes are of particular interest due to their consistent physical and chemical properties and their potential for assembly into complex superstructures. The use of supporting struts has proven to be effective in the construction of precise DNA polyhedra. However, the influence of struts on the structure of DNA origami frameworks on the nanoscale remains unclear. In this study, we developed a flexible square DNA origami (SDO) framework and enhanced its structural stability by incorporating interarm supporting struts (SDO-s). Comparing the framework with and without such struts, we found that SDO-s demonstrated a significantly improved resistance to deformation. We assessed the deformability of these two DNA origami structures through the statistical analysis of interior angles of polygons based on atomic force microscopy and transmission electron microscopy data. Our results showed that SDO-s exhibited more centralized interior angle distributions compared to SDO, reducing from 30-150° to 60-120°. Furthermore, molecular dynamics simulations indicated that supporting struts significantly decreased the thermodynamic fluctuations of the SDO-s, as described by the root-mean-square fluctuation parameter. Finally, we experimentally demonstrated that the 2D arrays assembled from SDO-s exhibited significantly higher quality than those assembled from SDO. These quantitative analyses provide an understanding of how supporting struts can enhance the structural integrity of DNA origami frameworks.


Assuntos
Nanoestruturas , Nanotecnologia , Nanotecnologia/métodos , Conformação de Ácido Nucleico , DNA/química , Nanoestruturas/química , Microscopia de Força Atômica
16.
Environ Geochem Health ; 46(3): 89, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367204

RESUMO

This study systematically analyzed the distribution characteristics, sources, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in Kuye River sediments, located in an energy and chemical industry base in northern Shaanxi, China. The results that revealed the concentrations of 16 PAHs in the sediment ranged from 1090.04 to 32,175.68 ng∙g-1 dw, with the four-ring PAHs accounting for the highest proportion. Positive matrix factorization analysis (PMF) revealed the main sources of PAHs as incomplete fossil fuel combustion, biomass combustion, and traffic emissions. The total toxic equivalent concentration of BaP, risk quotient, and lifetime carcinogenic risk of PAHs suggested moderate to high contamination of PAHs in the area. The higher incremental lifetime carcinogenic risk (ILCR) indicated that PAH ingestion was the primary route of impact on public health, with children potentially being more susceptible to PAH exposure. This study can provide valuable theoretical support for implementing pollution prevention measures and ecological restoration strategies for rivers in energy and chemical industry areas.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Criança , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios , Indústria Química , Poluentes Químicos da Água/análise , Sedimentos Geológicos/análise , Monitoramento Ambiental/métodos , Medição de Risco , China
17.
Eur J Clin Pharmacol ; 80(5): 685-696, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38329479

RESUMO

PURPOSE: To establish the population pharmacokinetics (PPK) model of cyclosporine A(CsA) in pediatric patients with thalassemia undergoing allogeneic hematopoietic stem cell transplantation (HSCT), aiming at providing a reference for clinical dose individualization of CsA. METHODS: Children with thalassemia who underwent allogeneic HSCT were enrolled retrospectively. The PPK structural model and the random variable model of CsA were established on NONMEN. And goodness of fit plots (GOFs), visual predictive check (VPC), and bootstrap and normalized prediction distribution errors (NPDE) were used to evaluate the final model. RESULTS: A one-compartment model with first-order absorption was employed to fit the base model. A total of 74 pediatric patients and 600 observations of whole blood concentration were included. The final model included weight (WT) in clearance (CL), alongside post-operative day (POD), fluconazole (FLUC), voriconazole (VORI), posaconazole (POSA), and red blood cell count (RBC) significantly. All the model evaluations were passed. CONCLUSION: In the PPK model based on the pediatric cohort on CsA with thalassemia undergoing allogeneic HSCT, WT, POD, FLUC, VORI, POSA, and RBC were found to be the significant factors influencing CL of CsA. The reliability and robustness of the final model were excellent. It is expected that the PPK model can assist in individualizing dosing strategy clinically.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Talassemia , Humanos , Criança , Ciclosporina/farmacocinética , Imunossupressores/farmacocinética , Estudos Retrospectivos , Reprodutibilidade dos Testes , Modelos Biológicos , Voriconazol , Fluconazol , Talassemia/cirurgia
18.
J Am Chem Soc ; 146(8): 5461-5469, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38355136

RESUMO

Two-dimensional (2D) DNA origami assembly represents a powerful approach to the programmable design and construction of advanced 2D materials. Within the context of hybridization-mediated 2D DNA origami assembly, DNA spacers play a pivotal role as essential connectors between sticky-end regions and DNA origami units. Here, we demonstrated that programming the spacer length, which determines the binding radius of DNA origami units, could effectively tune sticky-end hybridization reactions to produce distinct 2D DNA origami arrays. Using DNA-PAINT super-resolution imaging, we unveiled the significant impact of spacer length on the hybridization efficiency of sticky ends for assembling square DNA origami (SDO) units. We also found that the assembly efficiency and pattern diversity of 2D DNA origami assemblies were critically dependent on the spacer length. Remarkably, we realized a near-unity yield of ∼98% for the assembly of SDO trimers and tetramers via this spacer-programmed strategy. At last, we revealed that spacer lengths and thermodynamic fluctuations of SDO are positively correlated, using molecular dynamics simulations. Our study thus paves the way for the precision assembly of DNA nanostructures toward higher complexity.


Assuntos
DNA , Nanoestruturas , DNA Intergênico , Conformação de Ácido Nucleico , DNA/química , Nanoestruturas/química , Hibridização de Ácido Nucleico , Nanotecnologia
19.
Inorg Chem ; 63(9): 4086-4098, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38376137

RESUMO

Cytochrome P450 monooxygenase CxnD catalyzes intramolecular C-S bond formation in the biosynthesis of chuangxinmycin, which is representative of the synthesis of sulfur-containing natural heterocyclic compounds. The intramolecular cyclization usually requires the activation of two reaction sites and a large conformational change; thus, illuminating its detailed reaction mechanism remains challengeable. Here, the reaction pathway of CxnD-catalyzed C-S bond formation was clarified by a series of calculations, including Gaussian accelerated molecular dynamics simulations and quantum mechanical-molecular mechanical calculations. Our results revealed that the C-S formation follows a diradical coupling mechanism. CxnD first employs Cpd I to abstract the hydrogen atom from the imino group of the indole ring, and then, the resulted Cpd II further extracts another hydrogen atom from the thiol group of the side chain to afford a diradical intermediate, in which a noncrystal water molecule entering into the active site after the formation of Cpd I was proved to play an indispensable role. Moreover, the diradical intermediate cannot directly perform the coupling reaction. It should first undergo a series of conformational changes leading to the proximity of two reaction sites. It is the flexibility of the active site of the enzyme and the side chain of the substrate that makes the diradical coupling to be successful.


Assuntos
Sistema Enzimático do Citocromo P-450 , Água , Sistema Enzimático do Citocromo P-450/química , Indóis , Catálise , Hidrogênio
20.
Haematologica ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38328859

RESUMO

Hematopoietic stem cells (HSCs) are primarily dormant in a cell-cycle quiescence state to preserve their self-renewal capacity and long-term maintenance. How HSCs maintain the balance between activation and quiescence remains largely unknown. Herein, we found that Phosphatase, Mg2+/Mn2+ Dependent 1B (Ppm1b) is required for the expansion of phenotypic HSCs in vitro. By using a conditional knockout mouse model in which Ppm1b was specifically depleted in hematopoietic cells, we demonstrated that loss of Ppm1b impaired the HSC homeostasis and hematopoietic reconstitution. Ppm1b deficiency mice also exhibited B-cell leukocytopenia, which is due to the compromised commitment and proliferation of B-biased lymphoid progenitor cells from CLPs. With the aid of a small molecular inhibitor, we confirmed the roles of Ppm1b in adult hematopoiesis that phenocopied the effects with loss of Ppm1b. Furthermore, transcriptome profiling of Ppm1b-deficient HSCs revealed the disruptive quiescence of HSC. Mechanistically, Ppm1b interacted with ß-catenin and mediated its dephosphorylation. Loss of Ppm1b led to the decrease of the active ß- catenin (non-phosphorylated) that interrupted the Wnt/ß-catenin signaling in HSC, which consequently suppressed HSC expansion. Together, our study identified an indispensable role of Ppm1b in regulating HSC homeostasis via Wnt/ß-catenin pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...