Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
Angew Chem Int Ed Engl ; : e202404401, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729917

RESUMO

It is a crucial role for enhancing the power conversion efficiency (PCE) of perovskite solar cells (PSCs) to prepare high-quality perovskite films, which can be achieved by delaying the crystallization of perovskite film. Hence, we designed difluoroacetic anhydride (DFA) as an additive to regulating crystallization process thus reducing defect formation during perovskite film formation. It was found DFA reacts with DMSO by forming two molecules, difluoroacetate thioether ester (DTE) and difluoroacetic acid (DA). The strong bonding DTE·PbI2 and DA·PbI2 retard perovskite crystallization process for high-quality film formation, which was monitored through in situ UV-vis and PL tests. By using DFA additives, we prepared perovskite films with high-quality and low defects. Finally, a champion PCE of 25.28% was achieved with excellent environmental stability, which retained 95.75% of the initial PCE after 1152 h at 25 °C under 25% RH.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38716540

RESUMO

Bone cancer pain (BCP), due to cancer bone metastasis and bone destruction, is a common symptom of tumors, including breast, prostate, and lung tumors. Patients often experience severe pain without effective treatment. Here, using a mouse model of bone cancer, we report that MOTS-c, a novel mitochondrial-derived peptide, confers remarkable protection against cancer pain and bone destruction. Briefly, we find that the plasma level of endogenous MOTS-c is significantly lower in the BCP group than in the sham group. Accordingly, intraperitoneal administration of MOTS-c robustly attenuates bone cancer-induced pain. These effects are blocked by compound C, an AMPK inhibitor. Furthermore, MOTS-c treatment significantly enhances AMPKα 1/2 phosphorylation. Interestingly, mechanical studies indicate that at the spinal cord level, MOTS-c relieves pain by restoring mitochondrial biogenesis, suppressing microglial activation, and decreasing the production of inflammatory factors, which directly contribute to neuronal modulation. However, in the periphery, MOTS-c protects against local bone destruction by modulating osteoclast and immune cell function in the tumor microenvironment, providing long-term relief from cancer pain. Additionally, we find that chronic administration of MOTS-c has little effect on liver, renal, lipid or cardiac function in mice. In conclusion, MOTS-c improves BCP through peripheral and central synergistic effects on nociceptors, immune cells, and osteoclasts, providing a pharmacological and biological rationale for the development of mitochondrial peptide-based therapeutic agents for cancer-induced pain.

3.
Adv Mater ; : e2403682, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701489

RESUMO

Functional agents have been verified to efficiently enhance device performance of perovskite solar cells (PSCs) through surface engineering. However, the influence of intrinsic characteristics of molecules on final device performance has been overlooked. Here, we develop a surface reconstruction strategy to enhance the efficiency of inverted PSCs by mitigating the adverse effects of lead chelation (LC) molecules. We choose bathocuproine (BCP), as the representative of LC molecules for its easy accessibility and outstanding optoelectronic properties. During this strategy, BCP molecules on perovskite surface are first dissolved in solvents and then captured specially by undercoordinated Pb2+ ions, preventing adverse n-type doping by the molecules themselves. In this case, the BCP molecule exhibits outstanding passivation effect on perovskite surface, which leads to an obviously increased open-circuit voltage (VOC). Therefore, a record PCE of 25.64% for NiOx-based inverted PSCs is achieved, maintaining over 80% of initial efficiency after exposure to ambient condition for ∼1500 hours. This article is protected by copyright. All rights reserved.

4.
ACS Appl Mater Interfaces ; 16(19): 24943-24950, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38693823

RESUMO

Designing high-performance polarization-sensitive photodetectors is essential for photonic device applications. Anisotropic one-dimensional (1D) van der Waals (vdW) materials have provided a promising platform to that end. Despite significant advances in 1D vdW photonic devices, their performance is still far from delivering practical potential. Herein, we propose the design of high-performance polarization-sensitive photodetectors using unique 1D vdW materials. By leveraging the chemical vapor transport technique, we successfully fabricate high-quality 1D vdW Nb2Pd1-xSe5 (x = 0.29) nanowires. The 1D vdW Nb2Pd1-xSe5 photodetector exhibits a high mobility of ∼56 cm2/(V s) and superior photoresponse performance, including a high responsivity of 1A/W and an ultrafast response time of ∼8 µs under 638 nm illumination. Moreover, the 1D vdW Nb2Pd1-xSe5 photodetector demonstrates excellent polarization-sensitive photoresponse with a degree of linear polarization (DOLP) up to 0.85 and can be modulated by adjusting the gate voltage, laser power density, and wavelength. Those exceptional performance are believed to be relevant to the symmetry-reduction induced by the partial occupation of Pd sites. This study offers feasible approaches to enhance the anisotropy of 1D vdW materials and the modulation of their polarization-sensitive photoresponse, which may provide deep insights into the physical origin of anisotropic properties of 1D vdW materials.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38606720

RESUMO

Surface engineering is one of the important strategies to enhance the power conversion efficiency (PCE) and stability of perovskite solar cells (PSCs). Herein, 2-chloro-1,3-dimethylimidazolidinium hexafluorophosphate (CIP) was introduced into PSCs to passivate the defects of the perovskite films. There are many F atoms in CIP molecules that have strong electronegativity and hydrophobicity. F groups can interact with Pb2+ defects, inhibit interface recombination, improve the interaction between the CIP ionic liquid and perovskite film, and reduce the defect density of perovskites, thus improving the stability of perovskite devices. Density functional theory calculation reveals that CIP can interact with uncoordinated Pb2+ in perovskites through coordination, reduce the defects of perovskite films, and inhibit nonradiation recombination. The ITO/SnO2/MAPbI3/CIP/carbon devices without hole transport layers possessed the highest PCE of 17.06%. Moreover, the unencapsulated device remains at 98.18% of the initial efficiency stored in 30-40% relative humidity for 850 h. This strategy provides an effective reference for enhancing the performance of PSCs.

6.
Materials (Basel) ; 17(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38591418

RESUMO

Cylindrical Inconel 718 specimens were fabricated via a blown-powder, laser-directed energy deposition (DED-L) additive manufacturing (AM) process equipped with a dual thermal monitoring system to learn key process-structure relationships. Thermographic inspection of the heat affected zone (HAZ) and melt pool was performed with different layer-to-layer time intervals of ~0 s, 5 s, and 10 s, using an infrared camera and dual-wavelength pyrometer, respectively. Maximum melt pool temperatures were found to increase with layer number within a substrate affected zone (SAZ), and then asymptotically decrease. As the layer-to-layer time interval increased the HAZ temperature responses became more repetitive, indicating a desirable approach for achieving a more homogeneous microstructure along the height of a part. Microstructural variations in grain size and the coexistence of specific precipitate phases and Laves phases persisted among the investigated samples despite the employed standard heat treatment. This indicates that the effectiveness of any post DED-L heat treatment depends significantly on the initial, as-printed microstructure. Overall, this study demonstrates the importance of part size, part number per build, and time intervals on DED-L process parameter selection and post-process heat treatments for achieving better quality control.

7.
Arch Virol ; 169(5): 96, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619633

RESUMO

In recent years, the pig industry in Xinjiang, China, has been severely impacted by outbreaks of porcine epidemic diarrhea (PED), despite vaccination efforts. In this study, we investigated the genetic characteristics of currently prevalent porcine epidemic diarrhea virus (PEDV) strains in the region. We collected 548 samples from animals with suspected PED on large-scale pig farms in Xinjiang. Of these, 258 tested positive for PEDV by RT-PCR, yielding an overall positivity rate of 47.08%. S1 gene sequencing and phylogenetic analysis were conducted on 23 randomly selected RT-PCR-positive samples. Three endemic strains of PEDV (PEDV/CH/XU/2020, PEDV/CH/XK/2020, and PEDV/CH/XA/2020) were isolated, and their complete genome sequences were analyzed for evidence of genetic recombination. Sequence comparison of the S gene indicated significant variations in the S1 gene of the Xinjiang strains compared to the vaccine strains CV777, AJ1102, and LWL, with 90.2%-98.5% nucleotide sequence identity. Notably, both the N-terminal and C-terminal domains of the S protein showed significant variation. Genetic evolutionary analysis identified the GIIa subtype as the dominant genotype among the epidemic strains in Xinjiang. Recombination analysis revealed inter-subtype recombination events in the PEDV/CH/XK/2020 and XJ1904-34 strains. These findings highlight the extensive genetic variation in the predominant GIIa genotype of PEDV in Xinjiang, which does not match the genotype of the currently used vaccine strains. These data may guide further efforts toward the development of effective vaccines for the control of PED.


Assuntos
Disenteria , Vírus da Diarreia Epidêmica Suína , Vacinas , Animais , Suínos , Filogenia , Vírus da Diarreia Epidêmica Suína/genética , Evolução Biológica , China/epidemiologia
8.
Environ Res ; 252(Pt 2): 118921, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631474

RESUMO

Bacteriophages (phages) are viruses capable of regulating the proliferation of antibiotic resistant bacteria (ARB). However, phages that directly cause host lethality may quickly select for phage resistant bacteria, and the co-evolutionary trade-offs under varying environmental conditions, including the presence of antibiotics, remains unclear as to their impact on phage and antibiotic resistance. Here, we report the emergence of phage resistance in three distinct E. coli strains with varying resistance to ß-lactam antibiotics, treated with different ampicillin (AMP) concentrations. Hosts exhibiting stronger antibiotic resistance demonstrated a higher propensity to develop and maintain stable phage resistance. When exposed to polyvalent phage KNT-1, the growth of AMP-sensitive E. coli K12 was nearly suppressed within 18 h, while the exponential growth of AMP-resistant E. coli TEM and super-resistant E. coli NDM-1 was delayed by 12 h and 8 h, respectively. The mutation frequency and mutated colony count of E. coli NDM-1 were almost unaffected by co-existing AMP, whereas for E. coli TEM and K12, these metrics significantly decreased with increasing AMP concentration from 8 to 50 µg/mL, becoming unquantifiable at 100 µg/mL. Furthermore, the fitness costs of phage resistance mutation and its impact on initial antibiotic resistance in bacteria were further examined, through analyzing AMP susceptibility, biofilm formation and EPS secretion of the isolated phage resistant mutants. The results indicated that acquiring phage resistance could decrease antibiotic resistance, particularly for hosts lacking strong antibiotic resistance. The ability of mutants to form biofilm contributes to antibiotic resistance, but the correlation is not entirely positive, while the secretion of extracellular polymeric substance (EPS), especially the protein content, plays a crucial role in protecting the bacteria from both antibiotic and phage exposure. This study explores phage resistance development in hosts with different antibiotic resistance and helps to understand the limitations and possible solutions of phage-based technologies.

9.
J Orthop Surg Res ; 19(1): 270, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689328

RESUMO

BACKGROUND: Rotator cuff tears (RCTs) are a common musculoskeletal disorder, and arthroscopic rotator cuff repair (ARCR) is widely performed for tendon repair. Handgrip strength correlates with rotator cuff function; however, whether preoperative grip strength can predict functional outcomes in patients undergoing ARCR remains unknown. This study aimed to investigate the correlation between preoperative grip strength and postoperative shoulder function following ARCR. METHODS: A total of 52 patients with full-thickness repairable RCTs were prospectively enrolled. Baseline parameters, namely patient characteristics and intraoperative findings, were included for analysis. Postoperative shoulder functional outcomes were assessed using the Quick Disabilities of the Arm, Shoulder, and Hand (QDASH) questionnaire and Constant-Murley scores (CMSs). Patients were followed up and evaluated at three and six months after ARCR. The effects of baseline parameters on postoperative outcomes were measured using generalized estimating equations. RESULTS: At three and six months postoperatively, all clinical outcomes evaluated exhibited significant improvement from baseline following ARCR. Within 6 months postoperatively, higher preoperative grip strength was significantly correlated with higher CMSs (ß = 0.470, p = 0.022), whereas increased numbers of total suture anchors were significantly correlated with decreased CMSs (ß = - 4.361, p = 0.03). Higher body mass index was significantly correlated with higher postoperative QDASH scores (ß = 1.561, p = 0.03) during follow-up. CONCLUSIONS: Higher baseline grip strength predicts more favorable postoperative shoulder function following ARCR. A preoperative grip strength test in orthopedic clinics may serve as a predictor for postoperative shoulder functional recovery in patients undergoing ARCR.


Assuntos
Artroscopia , Força da Mão , Lesões do Manguito Rotador , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Artroscopia/métodos , Força da Mão/fisiologia , Lesões do Manguito Rotador/cirurgia , Lesões do Manguito Rotador/fisiopatologia , Idoso , Estudos Prospectivos , Período Pré-Operatório , Período Pós-Operatório , Resultado do Tratamento , Valor Preditivo dos Testes , Recuperação de Função Fisiológica/fisiologia , Manguito Rotador/cirurgia , Manguito Rotador/fisiopatologia , Seguimentos , Adulto , Ombro/cirurgia , Ombro/fisiopatologia
10.
Arch Microbiol ; 206(5): 220, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630188

RESUMO

Extracellular proteases, such as chitinases secreted by Arthrobotrys oligospora (A. oligospora), play a crucial role in the process of nematode infection. However, post-transcriptional regulation of gene expression involving microRNAs (miRNAs) in A. oligospora remains scarcely described. Hereto, transcriptome sequencing was carried out to analyze the expression profiles of chitin-responsive miRNAs in A. oligospora. Based on the RNA-seq data, the differential expression of miRNAs (DEmiRNAs) in response to chitin was screened, identified and characterized in A. oligospora. Meanwhile, the potential target genes were predicted by the online tools miRanda and Targetscan, respectively. Furthermore, the interaction of DEmiRNA with it's target gene was validated by a dual-luciferase reporter assay system. Among 85 novel miRNAs identified, 25 miRNAs displayed significant differences in expression in A. oligospora in response to chitin. Gene Ontology (GO) analysis showed that the potential genes targeted by DEmiRNAs were enriched in the biological processes such as bio-degradation, extracellular components and cell cycle. KEGG analysis revealed that the target genes were mainly involved in Hippo, carbon and riboflavin metabolic pathway. Outstandingly, chitinase AOL_s00004g379, which is involved in the hydrolysis metabolic pathway of chitin, was confirmed to be a target gene of differential miR_70. These findings suggest that chitin-responsive miRNAs are involved in the regulation of cell proliferation, predator hyphae growth and chitinase expression through the mechanisms of post-transcriptional regulation, which provides a new perspective to the molecular mechanisms underlying miRNAs-mediated control of gene expression in A. oligospora.


Assuntos
Ascomicetos , Quitinases , MicroRNAs , Quitina , Quitinases/genética , MicroRNAs/genética
11.
ACS Omega ; 9(9): 10488-10497, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463275

RESUMO

The chemical cleaning method is the simplest approach for degreasing oil-based drilling cuttings (ODCs), with the effectiveness of the treatment relying mainly on the selection of the surfactant and the cleaning conditions. However, achieving the standard treatment of ODCs directly using conventional surfactants proves challenging. In light of this, this study introduces a synthesized and purified Gemini surfactant named DCY-1. The structure of DCY-1 was confirmed through Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) analyses. The characterization in this article encompasses the use of an interface tension meter, nanoparticle size analysis, scanning electron microscopy, and infrared oil measurement. The critical micelle concentration (CMC) of DCY-1 was determined to be 3.37 × 10-3 mol/L, with a corresponding γcmc value of 37.97 mN/m. In comparison to conventional surfactants, DCY-1 exhibited a larger micelle size of 4.52 nm, approximately 24.52% larger than that of SDS. Moreover, the residual oil rate of 3.96% achieved by DCY-1 was the lowest among the chemical cleaning experimental results. Through a single-factor experiment, the optimal cleaning ability of DCY-1 for ODCs was determined as follows: a surfactant concentration of 3 mmol/L, a temperature of 60 °C, an ODC/liquid mass ratio of 1:4, a cleaning duration of 40 min, and a stirring speed of 1000 rad/min. Under these optimal conditions and after merely two cleaning procedures, the residual oil content of ODCs was reduced to 1.64%, accompanied by a smooth and loose surface structure.

12.
Bioprocess Biosyst Eng ; 47(4): 483-493, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38478120

RESUMO

To improve the methanogenic efficiency of lignite anaerobic fermentation and explore innovative approaches to sludge utilization, a co-fermentation technique involving lignite and sludge was employed for converting biomass into biomethane. Volatile suspended solids were introduced as a native enrichment of the sludge and mixed with lignite for fermentation. The synergistic fermentation mechanism between sludge and lignite for biomethane production was analyzed through biochemical methane potential experiments, measurement of various parameters pre- and post-fermentation, observation of bacterial population changes during the peak of reaction, carbon migration assessment, and evaluation of rheological characteristics. The results showed that the addition of sludge in the anaerobic fermentation process improved the microorganisms' ability to degrade lignite and bolstered biomethane production. Notably, the maximum methane production recorded was 215.52 mL/g-volatile suspended solids, achieved at a sludge to coal ratio of 3:1, with a synergistic growth rate of 25.37%. Furthermore, the removal rates of total suspended solids, and total chemical oxygen demand exhibited an upward trend with an increasing percentage of sludge in the mixture. The relative abundance and activity of the methanogens population were found to increase with an appropriate ratio of sludge to lignite. This observation confirmed the migration of carbon between the solid-liquid-gas phases, promoting enhanced system affinity. Additionally, the changes in solid-liquid phase parameters before and after the reaction indicated that the addition of sludge improved the system's degradation capacity. The results of the study hold significant implications in realizing the resource utilization of sludge and lignite while contributing to environmental protection endeavors.


Assuntos
Carvão Mineral , Esgotos , Fermentação , Esgotos/microbiologia , Metano/metabolismo , Carbono , Anaerobiose , Reatores Biológicos
13.
Adv Mater ; : e2310831, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553988

RESUMO

0D Bi-based 329-type halide perovskite is demonstrated as a promising semiconductor for X-ray detection due to its strong X-ray absorption, superior stability, availability of large single crystals (SCs) and solution processibility at low temperature. However, its low mobility-lifetime product (µτ) limits its further improvement in detection sensitivity. Based on the first-principles calculations, this work designs a new 2D Bi-based 329-type halide perovskite using a mixed-halide-induced structural dimension regulation strategy. By using a continuous supply of a precursor solution, this work successfully grows inch-sized high-quality SCs. These SCs exhibit large µτ product, high resistivity, and low ion migration. The detectors fabricated using the SCs show X-ray detection sensitivity as high as 24,509 µC Gyair -1 cm-2, short response time of 315 µs, low detection limit of 4.3 nGy s-1, and superior stability. These properties are the best among all lead-free perovskite detectors and are comparable to those of the best lead-based perovskite detectors. The linear array detector assembled on the SCs for the first time also shows a high spatial resolution of 10.6 lp mm-1 during X-ray imaging. The high performance combined with superior stability of these new 329-type lead-free halide perovskite SCs is expected to promote a new generation of X-ray detection technologies.

14.
Front Bioeng Biotechnol ; 12: 1376205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529403

RESUMO

Irreversible cryogenic damage caused by oocyte vitrification limits its widespread use in female fertility preservation. In recent years, nanoparticles (NPs) have gained great attention as potential alternatives in protecting oocytes against cryoinjuries. In this paper, a novel composite nanoparticle, poly (lactic-co-glycolic acid)-resveratrol (PLGA-RES) was designed to improve the biocompatibility and sustained release properties by encapsulating natural antioxidant RES into PLGA NPs. Firstly, biotoxicity and oxidation resistance of PLGA-RES were determined, and the results showed that PLGA-RES had nontoxic effect on oocyte survival during in vitro maturation (IVM) (97.08% ± 0.24% vs. 98.89% ± 1.11%, p > 0.05). Notably, PLGA-RES even increased maturation (65.10% ± 4.11% vs. 52.85% ± 2.87%, p < 0.05) and blastocyst rate (56.13% ± 1.36% vs. 40.91% ± 5.85%, p < 0.05). Moreover, the reduced reactive oxygen species (ROS) level (13.49 ± 2.30 vs. 34.07 ± 3.30, p < 0.01), increased glutathione (GSH) (44.13 ± 1.57 vs. 37.62 ± 1.79, p < 0.01) and elevated mitochondrial membrane potential (MMP) levels (43.10 ± 1.81 vs. 28.52 ± 1.25, p < 0.01) were observed in oocytes treated with PLGA-RES when compared with that of the control group. Subsequently, the role of PLGA-RES played in oocytes during vitrification was systematically evaluated. The results showed that the addition of PLGA-RES during vitrification and thawing significantly improved the survival rate (80.42% ± 1.97% vs. 75.37% ± 1.3%, p < 0.05). Meanwhile, increased GSH (15.09 ± 0.86 vs. 14.51 ± 0.78, p < 0.01) and mitochondrial membrane potential (22.56 ± 3.15 vs. 6.79 ± 0.60, p < 0.01), decreased reactive oxygen species levels (52.11 ± 2.95 vs. 75.41 ± 7.23, p < 0.05) and reduced mitochondrial abnormality distribution rate (25.00% ± 0.29% vs. 33.33% ± 1.15%, p < 0.01) were assessed in vitrified MII oocytes treated with PLGA-RES. Furthermore, transcriptomic analyses demonstrated that PLGA-RES participated in endocytosis and PI3K/AKT/mTOR pathway regulation, which was verified by the rescued expression of ARRB2 and ULK3 protein after PLGA-RES treatment. In conclusion, PLGA-RES exhibited potent antioxidant activity, and could be used as an efficacious strategy to improve the quality of vitrified oocytes.

15.
Microorganisms ; 12(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543615

RESUMO

Brevibacillus laterosporus (B. laterosporus) is widely distributed in nature and demonstrates significant potential for applications in biological control, environmental protection, agricultural production, and clinical medicine. This review provides a comprehensive overview of the applications of B. laterosporus in crop cultivation and animal feeding, as well as an examination of the antimicrobial peptides produced by B. laterosporus and their antibacterial mechanisms. B. laterosporus enhances crop cultivation by secreting hydrolases to improve nutrient absorption capabilities, synthesizing hormones to promote crop growth, and producing proteins to inhibit the reproduction of harmful organisms. B. laterosporus has been used to improve animal production by regulating the structure of the intestinal microbiota and inhibiting the growth of pathogenic bacteria through the secretion of various antimicrobial peptides. The bactericidal activity of Brevilaterins secreted by B. laterosporus is attributed to their ability to bind to lipopolysaccharide/lipid II molecules on the cell membrane, thereby altering permeability. Brevilaterins also inhibit bacterial reproduction by affecting relevant gene pathways in the cell membranes of pathogenic bacteria. These pathways include ATP synthesis, peptidoglycan biosynthesis, membrane transport, and cellular metabolism. In conclusion, B. laterosporus exhibits substantial potential as a probiotic activity in crop and animal production. However, applications of B. laterosporus in animal production could be improved, necessitating further research to elucidate the underlying probiotic mechanisms.

16.
Ann Plast Surg ; 92(3): 306-312, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38319979

RESUMO

BACKGROUND: The anterolateral thigh flap (ALTF) is a kind of lateral thigh flap that uses branches of the lateral circumflex femoral artery (LCFA) as the vessel pedicle and is widely used in plastic surgery. During classic ALTF surgery, some perforators from the descending branch of the lateral circumflex femoral artery (LCFA-db) are hard to harvest due to their anatomical variants and individual differences; thus, it is necessary to design an appropriate alternative surgical plan. The transverse branch of the LCFA (LCFA-tb) has unique advantages and can be a potential complement to ALTF vascular pedicle selection. The aim of this study was to compare the difference in morphology between LCFA-db and LCFA-tb, and to verify the feasibility and clinical effect of ALTF with LCFA-tb as the source artery. METHODS: The morphological and clinical data of patients who underwent wound repair of the extremities with the ALTF pedicled with the LCFA-tb and LCFA-db were retrospectively analyzed. This study consisted of the clinical data of 62 patients who accepted an ALTF pedicled with LCFA-tb, and 45 patients accepted an ALTF pedicled with LCFA-db. RESULTS: A total of 68 cutaneous perforators originating from the LCFA-tb were found in the surgical field, of which 35 perforators were direct cutaneous perforators (51.5%), 28 perforators were septocutaneous perforators (41.2%), and 5 perforators were musculocutaneous perforators (7.3%). Seventy-four cutaneous perforators were found in the LCFA-db group. The proportions of septocutaneous perforators and musculocutaneous perforators were 23% and 77%, respectively, and the number of direct cutaneous perforators was 0. The harvest time of flaps pedicled with LCFA-tb was remarkably shortened. Regarding prognosis, there were no significant differences between the curative effects of the 2 types of flaps. CONCLUSIONS: This study verified that most LCFA-tb perforators are direct cutaneous perforators and that the piercing-in positions of LCFA-tb perforators on superficial fascia were higher than those of LCFA-db perforators. Furthermore, the ALTF pedicled with LCFA-tb can provide satisfactory soft tissue reconstruction and can be used as a useful supplement to the traditional flap design.


Assuntos
Retalho Perfurante , Procedimentos de Cirurgia Plástica , Humanos , Coxa da Perna/irrigação sanguínea , Artéria Femoral/cirurgia , Artéria Femoral/anatomia & histologia , Estudos Retrospectivos , Retalhos Cirúrgicos/irrigação sanguínea , Retalho Perfurante/cirurgia
17.
J Phys Chem Lett ; 15(1): 329-338, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38170631

RESUMO

The atomic dynamic behaviors of formamidinium lead iodide [HC(NH2)2PbI3] are critical for understanding and improving photovoltaic performances. However, they remain unclear. Here, we investigate the structural phase transitions and the reorientation dynamics of the formamidinium cation [HC(NH2)2+, FA+] of FAPbI3 using neutron scattering techniques. Two structural phase transitions occur with decreasing temperature, from cubic to tetragonal phase at 285 K and then to another tetragonal at 140 K, accompanied by gradually frozen reorientation of FA cations. The nearly isotropic reorientation in the cubic phase is suppressed to reorientation motions involving a two-fold (C2) rotation along the N···N axis and a four-fold (C4) rotation along the C-H axis in the tetragonal phase, and eventually to local disordered motion as a partial C4 along the C-H axis in another tetragonal phase, thereby indicating an intimate interplay between lattice and orientation degrees of freedom in the hybrid perovskite materials. The present complete atomic structure and dynamics provide a solid standing point to understand and then improve photovoltaic properties of organic-inorganic hybrid perovskites in the future.

18.
J Transl Med ; 22(1): 67, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229113

RESUMO

PURPOSE: Evaluate the behavior of lung nodules occurring in areas of pulmonary fibrosis and compare them to pulmonary nodules occurring in the non-fibrotic lung parenchyma. METHODS: This retrospective review of chest CT scans and electronic medical records received expedited IRB approval and a waiver of informed consent. 4500 consecutive patients with a chest CT scan report containing the word fibrosis or a specific type of fibrosis were identified using the system M*Model Catalyst (Maplewood, Minnesota, U.S.). The largest nodule was measured in the longest dimension and re-evaluated, in the same way, on the follow-up exam if multiple time points were available. The nodule doubling time was calculated. If the patient developed cancer, the histologic diagnosis was documented. RESULTS: Six hundred and nine patients were found to have at least one pulmonary nodule on either the first or the second CT scan. 274 of the largest pulmonary nodules were in the fibrotic tissue and 335 were in the non-fibrotic lung parenchyma. Pathology proven cancer was more common in nodules occurring in areas of pulmonary fibrosis compared to nodules occurring in areas of non-fibrotic lung (34% vs 15%, p < 0.01). Adenocarcinoma was the most common cell type in both groups but more frequent in cancers occurring in non-fibrotic tissue. In the non-fibrotic lung, 1 of 126 (0.8%) of nodules measuring 1 to 6 mm were cancer. In contrast, 5 of 49 (10.2%) of nodules in fibrosis measuring 1 to 6 mm represented biopsy-proven cancer (p < 0.01). The doubling time for squamous cell cancer was shorter in the fibrotic lung compared to non-fibrotic lung, however, the difference was not statistically significant (p = 0.24). 15 incident lung nodules on second CT obtained ≤ 18 months after first CT scan was found in fibrotic lung and eight (53%) were diagnosed as cancer. CONCLUSIONS: Nodules occurring in fibrotic lung tissue are more likely to be cancer than nodules in the nonfibrotic lung. Incident pulmonary nodules in pulmonary fibrosis have a high likelihood of being cancer.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Fibrose Pulmonar , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/patologia , Nódulos Pulmonares Múltiplos/patologia , Pulmão/diagnóstico por imagem , Pulmão/patologia , Tomografia Computadorizada por Raios X/métodos
19.
J Transl Med ; 22(1): 51, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38216992

RESUMO

BACKGROUND: Chest Computed tomography (CT) scans detect lung nodules and assess pulmonary fibrosis. While pulmonary fibrosis indicates increased lung cancer risk, current clinical practice characterizes nodule risk of malignancy based on nodule size and smoking history; little consideration is given to the fibrotic microenvironment. PURPOSE: To evaluate the effect of incorporating fibrotic microenvironment into classifying malignancy of lung nodules in chest CT images using deep learning techniques. MATERIALS AND METHODS: We developed a visualizable 3D classification model trained with in-house CT dataset for the nodule malignancy classification task. Three slightly-modified datasets were created: (1) nodule alone (microenvironment removed); (2) nodule with surrounding lung microenvironment; and (3) nodule in microenvironment with semantic fibrosis metadata. For each of the models, tenfold cross-validation was performed. Results were evaluated using quantitative measures, such as accuracy, sensitivity, specificity, and area-under-curve (AUC), as well as qualitative assessments, such as attention maps and class activation maps (CAM). RESULTS: The classification model trained with nodule alone achieved 75.61% accuracy, 50.00% sensitivity, 88.46% specificity, and 0.78 AUC; the model trained with nodule and microenvironment achieved 79.03% accuracy, 65.46% sensitivity, 85.86% specificity, and 0.84 AUC. The model trained with additional semantic fibrosis metadata achieved 80.84% accuracy, 74.67% sensitivity, 84.95% specificity, and 0.89 AUC. Our visual evaluation of attention maps and CAM suggested that both the nodules and the microenvironment contributed to the task. CONCLUSION: The nodule malignancy classification performance was found to be improving with microenvironment data. Further improvement was found when incorporating semantic fibrosis information.


Assuntos
Neoplasias Pulmonares , Fibrose Pulmonar , Nódulo Pulmonar Solitário , Humanos , Neoplasias Pulmonares/patologia , Fibrose Pulmonar/complicações , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/patologia , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulo Pulmonar Solitário/patologia , Tomografia Computadorizada por Raios X/métodos , Pulmão/patologia , Microambiente Tumoral
20.
Ultrasound Med Biol ; 50(4): 610-616, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38290910

RESUMO

OBJECTIVE: Neonatal hypoxic-ischemic brain damage (HIBD) can have long-term implications on patients' physical and mental health, yet the available treatment options are limited. Recent research has shown that low-intensity pulsed ultrasound (LIPUS) holds promise for treating neurodegenerative diseases and traumatic brain injuries. Our objective was to explore the therapeutic potential of LIPUS for HIBD. METHODS: Due to the lack of a suitable animal model for neonatal HIBD, we will initially simulate the therapeutic effects of LIPUS on neuronal cells under oxidative stress and neuroinflammation using cell experiments. Previous studies have investigated the biologic responses following intracranial injection of 6-hydroxydopamine (6-OHDA). In this experiment, we will focus on the biologic effects produced by LIPUS treatment on neuronal cells (specifically, SH-SY5Y cells) without the presence of other neuroglial cell assistance after stimulation with 6-OHDA. RESULTS: We found that (i) pulsed ultrasound exposure, specifically three-intermittent sonication at intensities ranging from 0.1 to 0.5 W/cm², did not lead to a significant decrease in viability among SH-SY5Y cells; (ii) LIPUS treatment exhibited a positive effect on cell viability, accompanied by an increase in glial cell-derived neurotrophic factor (GDNF) levels and a decrease in caspase three levels; (iii) the administration of 6-OHDA had a significant impact on cell viability, resulting in a decrease in both brain cell-derived neurotrophic factor (BDNF) and GDNF levels, while concurrently elevating caspase three and matrix metalloproteinase-9 (MMP-9) levels; and (iv) LIPUS treatment demonstrated its potential to alleviate the changes induced by 6-OHDA, particularly in the levels of BDNF, GDNF, and tyrosine hydroxylase (TH). CONCLUSION: LIPUS treatment may possess partial therapeutic capabilities for SH-SY5Y cells damaged by 6-OHDA neurotoxicity. Our findings enhance our understanding of the effects of LIPUS treatment on cell viability and its modulation of key factors involved in the pathophysiology of HIBD and show the promising potential of LIPUS as an alternative therapeutic approach for neonates with HIBD.


Assuntos
Produtos Biológicos , Neuroblastoma , Animais , Recém-Nascido , Humanos , Fator Neurotrófico Derivado do Encéfalo , Oxidopamina , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Ondas Ultrassônicas , Caspases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...