Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Nanotechnology ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729124

RESUMO

Li metal batteries with polymer electrolyte are of great interest for next-generation batteries for high safety and high energy density. However, uneven deposition on the lithium metal surface can greatly affect battery life. Therefore, surface modification on the Li metal become necessary to achieve good performance. Herein, an artificial solid electrolyte interface (SEI) modified lithium metal anode is prepared using cation-polymerization process, as triggered by PF5 generated from CsPF6. As a result, the polarization voltage of Li||Li symmetric battery assembled with artificial SEI-modified Li metal anode was stable with a small over-potential of 25 mV after 3000 h at current density of 1.5 mA cm-2. Electrochemical performance of Li||NCM 622 (LiNi0.6Co0.2Mn0.2O2) full cell with soft-matter polymer electrolyte is significantly improved than bare Li-metal, the capacity retention is 75% after 120 cycles with N/P=3:1 at a cut-off voltage of 4.3 V. Our work has shed lights on the commercialization of Li metal battery with polymer electrolyte.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124474, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38763018

RESUMO

In recent years, aggregation-induced emission luminogens (AIEgens) have witnessed numerous groundbreaking advances in fundamental theoretical research and functional applications. Notably, stimuli-responsive AIEgens have achieved remarkable results, demonstrating immense potential for application in various fields such as chemistry, materials science, biology, and medicine. Herein, two multi-stimuli-responsive cyanostilbene derivatives TPE-CNTPA and PH-CNTPA were synthesized by introducing tetraphenylethylene (TPE) and trifluoromethyl groups, respectively. Primarily, under the combined mechanism of aggregation-induced emission (AIE) and twisted intramolecular charge transfer (TICT), TPE-CNTPA and PH-CNTPA exhibit "on-off-on" fluorescent emission characteristics in solution. Secondly, under 365 nm ultraviolet light irradiation, the photo-induced isomerization of PH-CNTPA causes changes in photophysical property, demonstrating its responsiveness to ultraviolet light. In addition, TPE-CNTPA and PH-CNTPA exhibit high-contrast mechanochromic properties, providing broader possibilities for their potential applications in various fields. Moreover, owing to the unique fluorescence emission characteristics, TPE-CNTPA and PH-CNTP have enormous potential for application in the field of encryption anti-counterfeiting. Besides, PH-CNTPA can be utilized for the detection of trace water in single or mixed solvents, demonstrating outstanding sensitivity and anti-interference properties in different solvents. This research work reveals the potential in the fields of water sensing and anti-counterfeiting for these two multi-stimuli-responsive compounds.

3.
Chem Biol Interact ; : 111061, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763347

RESUMO

Nerve agents pose significant threats to civilian and military populations. The reactivation of acetylcholinesterase (AChE) is critical in treating acute poisoning, but there is still lacking broad-spectrum reactivators, which presents a big challenge. Therefore, insights gained from the reactivation kinetic analysis and molecular docking are essential for understanding the behavior of reactivators towards intoxicated AChE. In this research, we present a systematic determination of the reactivation kinetics of three V agents-inhibited four human ChEs [(AChE and butyrylcholinesterase (BChE)) from either native or recombinant resources, namely, red blood cell (RBC) AChE, rhAChE, hBChE, rhBChE) reactivated by five standard oximes. We unveiled the effect of native and recombinant ChEs on the reactivation kinetics of V agents ex vitro, where the reactivation kinetics characteristic of Vs-inhibited BChE was reported for the first time. In terms of the inhibition type, all of the five oxime reactivators exhibited noncompetitive inhibition. The inhibition potency of these reactivators would not lead to the difference in the reactivation kinetics between native and recombinant ChE. Despite the significant differences between the native and recombinant ChEs observed in the inhibition, aging, and spontaneous reactivation kinetics, the reactivation kinetics of V agent-inhibited ChEs by oximes were less differentiated, which were supported by the ligand docking results. We also found differences in the reactivation efficiency between five reactivators and the phosphorylated enzyme, and molecular dynamic simulations can further explain from the perspectives of conformational stability, hydrogen bonding, binding free energies, and amino acid contributions. By Poisson-Boltzmann surface area (MM-PBSA) calculations, the total binding free energy trends aligned well with the experimental kr2 values.

4.
Cancer Control ; 31: 10732748241257142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38769028

RESUMO

OBJECTIVES: To investigate the role of circRNA regulators MBNL1 and QKI in the progression of esophageal squamous cell carcinoma. BACKGROUND: MBNL1 and QKI are pivotal regulators of pre-mRNA alternative splicing, crucial for controlling circRNA production - an emerging biomarker and functional regulator of tumor progression. Despite their recognized roles, their involvement in ESCC progression remains unexplored. METHODS: The expression levels of MBNL1 and QKI were examined in 28 tissue pairs from ESCC and adjacent normal tissues using data from the GEO database. Additionally, a total of 151 ESCC tissue samples, from stage T1 to T4, consisting of 13, 43, 87, and 8 cases per stage, respectively, were utilized for immunohistochemical (IHC) analysis. RNA sequencing was utilized to examine the expression profiles of circRNAs, lncRNAs, and mRNAs across 3 normal tissues, 3 ESCC tissues, and 3 pairs of KYSE150 cells in both wildtype (WT) and those with MBNL1 or QKI knockouts. Transwell, colony formation, and subcutaneous tumorigenesis assays assessed the impact of MBNL1 or QKI knockout on ESCC cell migration, invasion, and proliferation. RESULTS: ESCC onset significantly altered MBNL1 and QKI expression levels, influencing diverse RNA species. Elevated MBNL1 or QKI expression correlated with patient age or tumor invasion depth, respectively. MBNL1 or QKI knockout markedly enhanced cancer cell migration, invasion, proliferation, and tumor growth. Moreover, the absence of either MBNL1 or QKI modulated the expression profiles of multiple circRNAs, causing extensive downstream alterations in the expression of numerous lncRNAs and mRNAs. While the functions of circRNA and lncRNA among the top 20 differentially expressed genes remain unclear, mRNAs like SLCO4C1, TMPRSS15, and MAGEB2 have reported associations with tumor progression. CONCLUSIONS: This study underscores the tumor-suppressive roles of MBNL1 and QKI in ESCC, proposing them as potential biomarkers and therapeutic targets for ESCC diagnosis and treatment.


Assuntos
Progressão da Doença , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , RNA Circular , Proteínas de Ligação a RNA , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , RNA Circular/genética , Regulação Neoplásica da Expressão Gênica , Masculino , Proliferação de Células/genética , Linhagem Celular Tumoral , Feminino , Camundongos , Animais , Movimento Celular/genética , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
5.
Colloids Surf B Biointerfaces ; 239: 113965, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38772084

RESUMO

Photodynamic therapy (PDT) has become a promising approach and non-invasive modality for cancer treatment, however the therapeutic effect of PDT is limited in tumor metastasis and local recurrence. Herein, a tumor targeted nanomedicine (designated as PCN@HA) is constructed for enhanced PDT against tumors. By modified with hyaluronic acid (HA), which could target the CD44 receptor that expressed on the cancer cells, the targeting ability of PCN@HA has been enhanced. Under light irradiation, PCN@HA can produce cytotoxic singlet oxygen (1O2) and kill cancer cells, then eliminate tumors. Furthermore, PCN@HA exhibits fluorescence (FL)/ photoacoustic (PA) effects for multimodal imaging-guided cancer treatment. And PCN@HA-mediated PDT also can induce immunogenic cell death (ICD) and stimulate adaptive immune responses by releasing of tumor antigens. By combining with anti-PD-L1 checkpoint blockade therapy, it can not only effectively suppress the growth of primary tumor, but also inhibit the metastatic tumor growth.

6.
Sci Total Environ ; 931: 172866, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38705291

RESUMO

Tetracycline antibiotics (TCs) are extensively used in clinical medicine, animal husbandry, and aquaculture because of their cost-effectiveness and high antibacterial efficacy. However, the presence of TCs residues in the environment poses risks to humans. In this study, an inner filter effect (IFE) fluorescent probe, 2,2'-(ethane-1,2-diylbis((2-((2-methylquinolin-8-yl)amino)-2-oxoethyl)azanediyl))diacetic acid (MQDA), was developed for the rapid detection of Eu3+ within 30 s. And its complex [MQDA-Eu3+] was successfully used for the detection of TCs. Upon coordination of a carboxyl of MQDA with Eu3+ to form a [MQDA-Eu3+] complex, the carboxyl served as an antenna ligand for the effective detection of Eu3+ to intensify the emission intensity of MQDA via "antenna effect", the process was the energy absorbed by TCs via UV excitation was effectively transferred to Eu3+. Fluorescence quenching of the [MQDA-Eu3+] complex was caused by the IFE in multicolor fluorescence systems. The limits of detection of [MQDA-Eu3+] for oxytetracycline, chlorotetracycline hydrochloride, and tetracycline were 0.80, 0.93, and 1.7 µM in DMSO/HEPES (7:3, v/v, pH = 7.0), respectively. [MQDA-Eu3+] demonstrated sensitive detection of TCs in environmental and food samples with satisfactory recoveries and exhibited excellent imaging capabilities for TCs in living cells and zebrafish with low cytotoxicity. The proposed approach demonstrated considerable potential for the quantitative detection of TCs.


Assuntos
Antibacterianos , Európio , Corantes Fluorescentes , Antibacterianos/análise , Corantes Fluorescentes/química , Európio/química , Tetraciclina/análise , Tetraciclinas/análise , Animais , Poluentes Químicos da Água/análise , Fluorescência , Monitoramento Ambiental/métodos , Espectrometria de Fluorescência/métodos
7.
Water Sci Technol ; 89(7): 1682-1700, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619897

RESUMO

In this research, ascorbic acid (AA) was used to enhance Fe(II)/Fe(III)-activated permonosulfate (PMS) systems for the degradation of fluoranthene (FLT). AA enhanced the production of ROS in both PMS/Fe(II) and PMS/Fe(III) systems through chelation and reduction and thus improved the degradation performance of FLT. The optimal molar ratio in PMS/Fe(II)/AA/FLT and PMS/Fe(III)/AA/FLT processes were 2/2/4/1 and 5/10/5/1, respectively. In addition, the experimental results on the effect of FLT degradation under different groundwater matrixes indicated that PMS/Fe(III)/AA system was more adaptable to different water quality conditions than the PMS/Fe(II)/AA system. SO4·- was the major reactive oxygen species (ROS) responsible for FLT removal through the probe and scavenging tests in both systems. Furthermore, the degradation intermediates of FLT were analyzed using gas chromatograph-mass spectrometry (GC-MS), and the probable degradation pathways of FLT degradation were proposed. In addition, the removal of FLT was also tested in actual groundwater and the results showed that by increasing the dose and pre-adjusting the solution pH, 88.8 and 100% of the FLT was removed for PMS/Fe(II)/AA and PMS/Fe(III)/AA systems. The above experimental results demonstrated that PMS/Fe(II)/AA and PMS/Fe(III)/AA processes have a great perspective in practice for the rehabilitation of FLT-polluted groundwater.


Assuntos
Compostos Férricos , Fluorenos , Poluentes Químicos da Água , Espécies Reativas de Oxigênio , Poluentes Químicos da Água/química , Peróxidos/química , Compostos Ferrosos
8.
Photodiagnosis Photodyn Ther ; 46: 104105, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677498

RESUMO

Cervical cancer is the most common gynaecological tumor. The development of a sensor for the ultrasensitive detection of cervical cancer is significant in guaranteeing its prognosis. Herein, we proposed a novel surface-enhanced Raman scattering (SERS) analysis platform using a frequency shifts-based sensing model for rapid and ultrasensitive microRNA (miRNA) assay. During the analysis process, miR-21 can be captured by the single-stranded DNA (ssDNA) modified on the platform which is complementary pairing with miR-21. The connection of miR-21 can lead to the variation of the molecular weight and result in the deformation extent of the Raman report molecule 6Thioguanine (6TG); thus, the peak at 1301 cm-1 due to the ring C-N stretches of 6TG shifts to lower frequency. The detection limit (LOD) of the proposed SERS analysis platform is as low as 8.32 aM. Moreover, the platform also has excellent specificity and repeatability, with the relative standard deviation (RSD) value of 6.53 %. Serum samples of cervical cancer patients and healthy subjects were analyzed via the platform and the accuracy of the detection results was verified by qRT-PCR, revealing that SERS results and qRT-PCR results have high homogeneity. Thus, the platform can serve as a potential tool for clinical diagnosis of cervical cancer.

9.
J Phys Chem Lett ; 15(14): 3764-3771, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38552186

RESUMO

In this study, we developed a machine-learned force field for CsPbI3 using a neural network potential, enabling molecular dynamics simulations (MD) with ab initio accuracy over nanoseconds. This approach, combined with ab initio MD and nonadiabatic MD, was used to study the charge trapping and recombination dynamics in both pristine and defective CsPbI3. Our simulations revealed key transitions affecting carrier lifetimes, especially in systems with iodine vacancy and interstitial iodine defects. An iodine trimer, formed when iodine replaces cesium, exhibits a high-frequency phonon mode. This mode enhances nonadiabatic coupling, accelerating charge recombination in defective systems compared to pristine ones. In the iodine vacancy system, recombination times varied significantly due to differences in NA coupling and energy gaps. The interplay between nonadiabatic coupling and pure dephasing time is crucial in determining recombination times for interstitial iodine defects. Our findings highlight the role of defect evolution in perovskites, offering insights for enhancing perovskite performance.

10.
PLoS One ; 19(3): e0298417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38489329

RESUMO

Urbanization has led to accelerated traffic congestion, posing a significant obstacle to urban development. Traditional traffic signal scheduling methods are often inefficient and cumbersome, resulting in unnecessary waiting times for vehicles and pedestrians, exacerbating the traffic situation. To address this issue, this article proposes a dynamic traffic signal scheduling system based on an improved greedy algorithm. Unlike conventional approaches, we introduce a reward function and a cost model to ensure fair scheduling plans. A constraint function is also established, and the traffic signal scheduling is iterated through the feasible matrix using the greedy algorithm to simplify the decision-making process and enhance solution efficiency. Moreover, an emergency module is integrated to prioritize special emergency vehicles, reducing their response time during emergencies. To validate the effectiveness of our dynamic traffic signal scheduling system, we conducted simulation experiments using the Simulation of Urban Mobility (SUMO) traffic simulation suite and the SUMO traffic control interface Traci. The results indicate that our system significantly improves intersection throughput and adapts well to various traffic conditions, effectively resolving urban traffic congestion while ensuring fair scheduling plans.


Assuntos
Algoritmos , Pedestres , Humanos , Simulação por Computador , Ambulâncias
11.
ACS Appl Mater Interfaces ; 16(12): 15372-15382, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38494605

RESUMO

Electromagnetic interference (EMI) shielding and infrared stealth technologies are essential for military and civilian applications. However, it remains a significant challenge to integrate various functions efficiently into a material efficiently. Herein, a minimalist strategy to fabricate multifunctional phase change organohydrogels (PCOHs) was proposed, which were fabricated from polyacrylamide (PAM) organohydrogels, MXene/PEDOT:PSS hybrid fillers, and sodium sulfate decahydrate (Na2SO4·10H2O, SSD) via one-step photoinitiation strategies. PCOHs with a high enthalpy value (130.7 J/g) and encapsulation rate (98%) could adjust the temperature by triggering a phase change of SSD, which can hide infrared radiation to achieve medium-low temperature infrared stealth. In addition, the PCOH-based sensor has good strain sensing ability due to the incorporation of MXene/PEDOT:PSS and can precisely monitor human movement. Remarkably, benefiting from the electron conduction of the three-dimensional conductive network and the ion conduction of the hydrogel, the EMI shielding efficiency (k) of PCOHs can reach 99.99% even the filler content as low as 1.8 wt %. Additionally, EMI shielding, infrared stealth, and sensing-integrated PCOHs can be adhered to arbitrary targets due to their excellent flexibility and adaptability. This work offers a promising pathway for fabricating multifunctional phase change materials, which show great application prospects in military and civilian fields.

12.
Mater Today Bio ; 25: 100981, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38356961

RESUMO

Nanomedicines receive great attention in cancer treatment. Nevertheless, nonbiodegradable and long-term retention still limit their clinical translation. Herein, we successfully synthesize a hypoxia-triggered degradable porphyrinic covalent organic framework (HPCOF) for antitumor therapy in vivo. HPCOF possesses wide absorption in near infrared region (NIR) which endows HPCOF excellent photothermal conversion efficiency and photoacoustic (PA) imaging ability. Moreover, HPCOF exhibits excellent photodynamic and photothermal effect under special-wavelength laser irradiation. For the first time, the in vitro and in vivo tests demonstrate that HPCOF shows effective therapeutic effect for the combination of PDT and PTT under the monitoring of PA imaging. Importantly, in tumor region, HPCOF could be triggered by hypoxia microenvironment and collapsed gradually, then cleared from the body after treatment. This work fabricates a novel COF for cancer treatment and testifies great potential of HPCOF in clinical application with reducing long-term toxicity.

13.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328218

RESUMO

Reproductive success relies on proper establishment and maintenance of biological sex. In many animals, including mammals, the primary gonad is initially ovary in character. We previously showed the RNA binding protein (RNAbp), Rbpms2, is required for ovary fate in zebrafish. Here, we identified Rbpms2 targets in oocytes (Rbpms2-bound oocyte RNAs; rboRNAs). We identify Rbpms2 as a translational regulator of rboRNAs, which include testis factors and ribosome biogenesis factors. Further, genetic analyses indicate that Rbpms2 promotes nucleolar amplification via the mTorc1 signaling pathway, specifically through the mTorc1-activating Gap activity towards Rags 2 (Gator2) component, Missing oocyte (Mios). Cumulatively, our findings indicate that early gonocytes are in a dual poised, bipotential state in which Rbpms2 acts as a binary fate-switch. Specifically, Rbpms2 represses testis factors and promotes oocyte factors to promote oocyte progression through an essential Gator2-mediated checkpoint, thereby integrating regulation of sexual differentiation factors and nutritional availability pathways in zebrafish oogenesis.

14.
Micromachines (Basel) ; 15(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38399007

RESUMO

Capacitive micromachined ultrasonic transducer (CMUT) has been widely studied due to its excellent resonance characteristics and array integration. This paper presents the first study of the CMUT electrostatic stiffness resonant accelerometer. To improve the sensitivity of the CMUT accelerometer, this paper innovatively proposes the CMUT ring-perforation membrane structure, which effectively improves the acceleration sensitivity by reducing the mechanical stiffness of the elastic membrane. The acceleration sensitivity is 10.9 (Hz/g) in the acceleration range of 0-20 g, which is 100% higher than that of the conventional CMUT structure. This research contributes to the acceleration measurement field of CMUT and can effectively contribute to the breakthrough of vibration acceleration monitoring technology in aerospace, medical equipment, and automotive electronics.

15.
Entropy (Basel) ; 26(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38248186

RESUMO

Image stitching aims to synthesize a wider and more informative whole image, which has been widely used in various fields. This study focuses on improving the accuracy of image mosaic and proposes an image mosaic method based on local edge contour matching constraints. Because the accuracy and quantity of feature matching have a direct influence on the stitching result, it often leads to wrong image warpage model estimation when feature points are difficult to detect and match errors are easy to occur. To address this issue, the geometric invariance is used to expand the number of feature matching points, thus enriching the matching information. Based on Canny edge detection, significant local edge contour features are constructed through operations such as structure separation and edge contour merging to improve the image registration effect. The method also introduces the spatial variation warping method to ensure the local alignment of the overlapping area, maintains the line structure in the image without bending by the constraints of short and long lines, and eliminates the distortion of the non-overlapping area by the global line-guided warping method. The method proposed in this paper is compared with other research through experimental comparisons on multiple datasets, and excellent stitching results are obtained.

16.
Small ; : e2310418, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267816

RESUMO

Antimony selenosulfide (Sb2 (S,Se)3 ) is an emerging quasi-1D photovoltaic semiconductor with exceptional photoelectric properties. The low-symmetry chain structure contains complex defects and makes it difficult to improve electrical properties via doping method. This article reports a doping strategy to enhance the efficiency of Sb2 (S,Se)3 solar cells by using alkali halide (CsI) as the hydrothermal reaction precursor. It is found that the Cs and I ions are effectively doped and atomically coordinate with Sb ions and S/Se ions. The CsI-doping Sb2 (S,Se)3 absorbers exhibit enhanced grain morphologies and reduced trap densities. The consequential CsI-doping Sb2 (S,Se)3 based solar cells demonstrate favorable band alignment, suppressed carrier recombination, and improved device performance. An efficiency as high as 10.05% under standard AM1.5 illumination irradiance is achieved. This precursor-based alkali halide doping strategy provides a useful guidance for high-efficiency antimony selenosulfide solar cells.

17.
Transl Oncol ; 39: 101828, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000147

RESUMO

BACKGROUND: The aim of this study was to investigate the potential role of lipid metabolism-associated genes (LMAGs) in neoadjuvant chemoradiotherapy (nCRT) and immunotherapy for rectal cancer. METHODS: Differential LMAGs were characterized and functional enrichment analysis was performed. Multiple machine learning algorithms were combined to explore candidate LMAGs. ROC analysis was performed to evaluate the predicting accuracy of candidate LMAGs. The expression patterns, prognostic value, genetic alterations, and immune cell infiltration of the top-ranked LMAGs were investigated. RESULTS: We identified 45 LMAGs that were differentially expressed in tumor samples of nCRT responders and non-responders. These LMAGs were closely associated with lipid metabolism-related biological processes and pathways. ROC analysis revealed that the SREBF2 gene, an important transcription factor in regulating lipid metabolism, was the highest predictor of nCRT in rectal cancer. SREBF2 was highly expressed in rectal cancer tissues and high expression of SREBF2 was associated with favorable prognosis. Multivariate analysis showed that SREBF2 was an independent prognostic factor, and we integrated it with other clinical factors to establish an effective prognostic nomogram. SREBF2 also played a synergistic role with its co-expressed genes in the prognostic process of rectal cancer. Furthermore, SREBF2 was demonstrated to be closely associated with multiple immune infiltrating cells, and immunotherapy-related genes and may be used to predict the response to immunotherapy. CONCLUSION: Our study suggests that LMAGs may serve as promising biomarkers in nCRT combined with immunotherapy for rectal cancer. However, large-scale clinical trials and biological experiments are necessary to demonstrate the efficacy and underlying mechanisms.

18.
Food Chem ; 440: 138244, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142554

RESUMO

Flusilazole is a triazole fungicide with residues that are potentially toxic to humans. It enters the human body mainly through food, although its bactericidal activity is substantial. In this study, an electrochemical sensor Fe/Fe2O3@C with a core-shell structure was constructed to efficiently detect flusilazole by annealing MIL-53(Fe) which was prepared by a simple solvothermal method. Transmission electron microscopy and scanning electron microscopy were used to characterize the apparent morphology of MIL-53(Fe) and Fe/Fe2O3@C, and their structures were further characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, powder X-ray diffraction, and the mapping of elements by energy dispersive spectroscopy. The electrochemical behavior of Fe/Fe2O3@C in the detection of flusilazole was evaluated by differential pulse voltammetry under optimal conditions. The results of the study indicate that the Fe/Fe2O3@C electrochemical sensor displayed excellent detection capabilities for flusilazole, where the sensor exhibited a wide detection range from 1.00 × 10-4 to 1.00 × 10-12 mol/L with an incredibly low LOD of 593 fM, making it highly sensitive to trace amounts of flusilazole. Moreover, Fe/Fe2O3@C demonstrated superior reproducibility, stability, and resistance to interference, highlighting its reliability in practical applications. The sensor was also successfully utilized to quantitatively detect flusilazole in various real samples, which suggests that Fe/Fe2O3@C has broad-spectrum environmental resistance and can effectively and rapidly detect flusilazole residues in different types of food items and environmental matrices. The study also delved into the mechanism of Fe/Fe2O3@C for the detection of flusilazole, providing a deeper understanding of the functionality of this sensor. Overall, these findings emphasize the practical significance of Fe/Fe2O3@C as an electrochemical sensor, showcasing its potential for real-world applications in food safety and environmental monitoring.


Assuntos
Inocuidade dos Alimentos , Silanos , Triazóis , Humanos , Reprodutibilidade dos Testes , Microscopia Eletrônica de Varredura , Técnicas Eletroquímicas/métodos
19.
Redox Rep ; 28(1): 2279818, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38052218

RESUMO

OBJECTIVE: The testis is vulnerable to ionizing radiation, sexual dysfunction and male infertility are common problems after local radiation or whole-body exposure. Currently, there are no approved drugs for the prevention or treatment of radiation testicular injury. Sulforaphane (SFN) is an indirect antioxidant that induces phase II detoxification enzymes and antioxidant genes. Herein, we investigated the radiation protective effect of SFN on testicular injury in mice and its potential mechanism. MATERIALS AND METHODS: Mice were randomly divided into blank control group (Ctrl), radiation + no pretreatment group (IR), and radiation + SFN groups (IRS). In the radiation + SFN groups, starting from 72 h before radiation, SFN solution was intraperitoneally injected once a day until they were sacrificed. Mice in the blank control group and the radiation + no pretreatment group were simultaneously injected intraperitoneally with an equal volume of the solvent used to dissolve SFN (PBS with a final concentration of 0.1%DMSO) until they were sacrificed. They were subjected to 6Mev-ray radiation to the lower abdominal testis area (total dose 2Gy). Twenty-four hours after radiation, six mice in each group were randomly sacrificed. Seventy-two hours after radiation, the remaining mice were sacrificed. RESULTS: The results showed that the harmful effects of ionizing radiation on testes were manifested as damage to histoarchitecture, increased oxidative stress, and apoptosis, and thus impaired male fertility. SFN injections can reverse these symptoms. CONCLUSIONS: The results showed that SFN can improve the damage of mouse testis caused by irradiation. Furthermore, SFN prevents spermatogenesis dysfunction caused by ionizing radiation by activating Nrf2 and its downstream antioxidant gene.


Assuntos
Antioxidantes , Testículo , Masculino , Animais , Camundongos , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Isotiocianatos/uso terapêutico , Isotiocianatos/metabolismo , Isotiocianatos/farmacologia
20.
Sensors (Basel) ; 23(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139740

RESUMO

Surface acoustic wave resonators are widely applied in electronics, communication, and other engineering fields. However, the spurious modes generally present in resonators can cause deterioration in device performance. Therefore, this paper proposes a hexagonal weighted structure to suppress them. With the construction of a finite element resonator model, the parameters of the interdigital transducer (IDT) and the area of the dummy finger weighting are determined. The spurious waves are confined within the dummy finger area, whereas the main mode is less affected by this structure. To verify the suppression effect of the simulation, resonators with conventional and hexagonal weighted structures are fabricated using the micro-electromechanical systems (MEMS) process. After the S-parameter test of the prepared resonators, the hexagonal weighted resonators achieve a high level of spurious mode suppression. Their properties are superior to those of the conventional structure, with a higher Q value (10,406), a higher minimum return loss (25.7 dB), and a lower ratio of peak sidelobe (19%). This work provides a feasible solution for the design of SAW resonators to suppress spurious modes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...