Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Stem Cell Reports ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38759645

RESUMO

Lung alveolar structure and function are maintained by subsets of alveolar type II stem cells (AT2s), but there is a need for characterization of these subsets and their associated niches. Here, we report a CD44high subpopulation of AT2s characterized by increased expression of genes that regulate immune signaling even during steady-state homeostasis. Disruption of one of these immune regulatory transcription factor STAT1 impaired the stem cell function of AT2s. CD44high cells were preferentially located near macro- blood vessels and a supportive niche constituted by LYVE1+ endothelial cells, adventitial fibroblasts, and accumulated hyaluronan. In this microenvironment, CD44high AT2 cells were more responsive to transformation by KRAS than general AT2 cells. Moreover, after bacterial lung injury, there was a significant increase of CD44high AT2s and niche components distributed throughout the lung parenchyma. Taken together, CD44high AT2 cells and their perivascular niche regulate tissue homeostasis and tumor formation.

2.
Micromachines (Basel) ; 15(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38793199

RESUMO

White organic light-emitting diodes (WOLEDs) hold vast prospects in the fields of next-generation displays and solid-state lighting. Ultrathin emitting layers (UEMLs) have become a research hotspot because of their unique advantage. On the basis of simplifying the device structure and preparation process, they can achieve electroluminescent performance comparable to that of doped devices. In this review, we first discuss the working principles and advantages of WOLEDs based on UEML architecture, which can achieve low cost and more flexibility by simplifying the device structure and preparation process. Subsequently, the successful applications of doping and non-doping technologies in fluorescent, phosphorescent, and hybrid WOLEDs combined with UEMLs are discussed, and the operation mechanisms of these WOLEDs are emphasized briefly. We firmly believe that this article will bring new hope for the development of UEML-based WOLEDs in the future.

3.
Viruses ; 16(5)2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38793587

RESUMO

A massive mortality event concerning farmed Chinese tongue soles occurred in Tianjin, China, and the causative agent remains unknown. Here, a novel Cynoglossus semilaevis papillomavirus (CsPaV) and parvovirus (CsPV) were simultaneously isolated and identified from diseased fish via electron microscopy, virus isolation, genome sequencing, experimental challenges, and fluorescence in situ hybridization (FISH). Electron microscopy showed large numbers of virus particles present in the tissues of diseased fish. Viruses that were isolated and propagated in flounder gill cells (FG) induced typical cytopathic effects (CPE). The cumulative mortality of fish given intraperitoneal injections reached 100% at 7 dpi. The complete genomes of CsPaV and CsPV comprised 5939 bp and 3663 bp, respectively, and the genomes shared no nucleotide sequence similarities with other viruses. Phylogenetic analysis based on the L1 and NS1 protein sequences revealed that CsPaV and CsPV were novel members of the Papillomaviridae and Parvoviridae families. The FISH results showed positive signals in the spleen tissues of infected fish, and both viruses could co-infect single cells. This study represents the first report where novel papillomavirus and parvovirus are identified in farmed marine cultured fish, and it provides a basis for further studies on the prevention and treatment of emerging viral diseases.


Assuntos
Doenças dos Peixes , Linguados , Genoma Viral , Papillomaviridae , Infecções por Parvoviridae , Parvovirus , Filogenia , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/mortalidade , China , Linguados/virologia , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/virologia , Parvovirus/genética , Parvovirus/isolamento & purificação , Parvovirus/classificação , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Papillomaviridae/classificação , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/veterinária , Hibridização in Situ Fluorescente
4.
Oncogene ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698265

RESUMO

Regulatory T cells (Tregs) prevent autoimmunity and contribute to cancer progression. They exert contact-dependent inhibition of immune cells through the production of active transforming growth factor-ß1 (TGF-ß1). However, the absence of a specific surface marker makes inhibiting the production of active TGF-ß1 to specifically deplete human Tregs but not other cell types a challenge. TGF-ß1 in an inactive form binds to Tregs membrane protein Glycoprotein A Repetitions Predominant (GARP) and then activates it via an unknown mechanism. Here, we demonstrated that tumour necrosis factor receptor-associated factor 3 interacting protein 3 (TRAF3IP3) in the Treg lysosome is involved in this activation mechanism. Using a novel naphthalenelactam-platinum-based anticancer drug (NPt), we developed a new synergistic effect by suppressing ATP-binding cassette subfamily B member 9 (ABCB9) and TRAF3IP3-mediated divergent lysosomal metabolic programs in tumors and human Tregs to block the production of active GARP/TGF-ß1 for remodeling the tumor microenvironment. Mechanistically, NPt is stored in Treg lysosome to inhibit TRAF3IP3-meditated GARP/TGF-ß1 complex activation to specifically deplete Tregs. In addition, by promoting the expression of ABCB9 in lysosome membrane, NPt inhibits SARA/p-SMAD2/3 through CHRD-induced TGF-ß1 signaling pathway. In addition to expose a previously undefined divergent lysosomal metabolic program-meditated GARP/TGF-ß1 complex blockade by exploring the inherent metabolic plasticity, NPt may serve as a therapeutic tool to boost unrecognized Treg-based immune responses to infection or cancer via a mechanism distinct from traditional platinum drugs and currently available immune-modulatory antibodies.

5.
Biomed Pharmacother ; 174: 116572, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626519

RESUMO

Epigenetic regulation and mitochondrial dysfunction are essential to the progression of idiopathic pulmonary fibrosis (IPF). Curcumin (CCM) in inhibits the progression of pulmonary fibrosis by regulating the expression of specific miRNAs and pulmonary fibroblast mitochondrial function; however, the underlying mechanism is unclear. C57BL/6 mice were intratracheally injected with bleomycin (5 mg/kg) and treated with CCM (25 mg/kg body weight/3 times per week, intraperitoneal injection) for 28 days. Verhoeff-Van Gieson, Picro sirius red, and Masson's trichrome staining were used to examine the expression and distribution of collagen and elastic fibers in the lung tissue. Pulmonary fibrosis was determined using micro-computed tomography and transmission electron microscopy. Human pulmonary fibroblasts were transfected with miR-29a-3p, and RT-qPCR, immunostaining, and western blotting were performed to determine the expression of DNMT3A and extracellular matrix collagen-1 (COL1A1) and fibronectin-1 (FN1) levels. The expression of mitochondrial electron transport chain complex (MRC) and mitochondrial function were detected using western blotting and Seahorse XFp Technology. CCM in increased the expression of miR-29a-3p in the lung tissue and inhibited the DNMT3A to reduce the COL1A1 and FN1 levels leading to pulmonary extracellular matrix remodeling. In addition, CCM inhibited pulmonary fibroblasts MRC and mitochondrial function via the miR-29a-3p/DNMT3A pathway. CCM attenuates pulmonary fibrosis via the miR-29a-3p/DNMT3A axis to regulate extracellular matrix remodeling and mitochondrial function and may provide a new therapeutic intervention for preventing pulmonary fibrosis.


Assuntos
Curcumina , DNA Metiltransferase 3A , Matriz Extracelular , Fibroblastos , Camundongos Endogâmicos C57BL , MicroRNAs , Mitocôndrias , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Curcumina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , DNA Metiltransferase 3A/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Humanos , Camundongos , Masculino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Bleomicina , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Modelos Animais de Doenças
6.
Chin Med J Pulm Crit Care Med ; 2(1): 17-26, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38645714

RESUMO

Alveoli serve as the functional units of the lungs, responsible for the critical task of blood-gas exchange. Comprising type I (AT1) and type II (AT2) cells, the alveolar epithelium is continuously subject to external aggressors like pathogens and airborne particles. As such, preserving lung function requires both the homeostatic renewal and reparative regeneration of this epithelial layer. Dysfunctions in these processes contribute to various lung diseases. Recent research has pinpointed specific cell subgroups that act as potential stem or progenitor cells for the alveolar epithelium during both homeostasis and regeneration. Additionally, endothelial cells, fibroblasts, and immune cells synergistically establish a nurturing microenvironment-or "niche"-that modulates these epithelial stem cells. This review aims to consolidate the latest findings on the identities of these stem cells and the components of their niche, as well as the molecular mechanisms that govern them. Additionally, this article highlights diseases that arise due to perturbations in stem cell-niche interactions. We also discuss recent technical innovations that have catalyzed these discoveries. Specifically, this review underscores the heterogeneity, plasticity, and dynamic regulation of these stem cell-niche systems. It is our aspiration that a deeper understanding of the fundamental cellular and molecular mechanisms underlying alveolar homeostasis and regeneration will open avenues for identifying novel therapeutic targets for conditions such as chronic obstructive pulmonary disease (COPD), fibrosis, coronavirus disease 2019 (COVID-19), and lung cancer.

7.
Environ Sci Technol ; 58(13): 5784-5795, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507561

RESUMO

The dietary preferences of the elderly population exhibit distinct variations from the overall averages in most countries, gaining increasing significance due to aging demographics worldwide. These dietary preferences play a crucial role in shaping global food systems, which will result in changed environmental impacts in the future such as greenhouse gas (GHG) emissions. We present a quantitative evaluation of the influence of population aging on the changes in GHG emissions from global food systems. To achieve this, we developed regional dietary coefficients (DCs) of the elderly based on the Global Dietary Database (GDD). We then reconciled the GDD with the dataset from the Food and Agriculture Organization of the United Nations (FAO) to calculate the food GHG emissions of the average population in each of the countries. By applying the DCs, we estimated the national food GHG emissions and obtained the variations between the emissions from aged and average populations. We employed a modified version of the regional integrated model of climate and the economy model (RICE) to forecast the emission trends in different countries based on FAO and GDD data. This integrated approach allowed us to evaluate the dynamic relationships among aging demographics, food consumption patterns, and economic developments within regions. Our results indicate that the annual aging-embodied global food GHG emissions will reach 288 million tonnes of CO2 equivalent (Mt CO2e) by 2100. This estimation is crucial for policymakers, entrepreneurs, and researchers as it provides insights into a potential future environmental challenge and emphasizes the importance of sustainable food production and consumption strategies to GHG emission mitigations associated with aging dietary patterns.


Assuntos
Gases de Efeito Estufa , Idoso , Humanos , Efeito Estufa , Meio Ambiente , Agricultura , Envelhecimento
8.
J Phys Chem B ; 128(5): 1194-1204, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38287918

RESUMO

In eukaryotic cell division, a series of events are organized to produce two daughter cells. The spindle elongation in anaphase B is essential for providing enough space to maintain cell size and distribute sister chromatids properly, which is associated with microtubules and microtubule-associated proteins such as kinesin-5 Eg5 and the Ase1-related protein, PRC1. The available experimental data indicated that after the start of anaphase B more PRC1 proteins can bind to the antiparallel microtubule pairs in the spindle but the excess amount of PRC1 proteins can lead to the failure of cell division, indicating that PRC1 proteins can regulate the spindle elongation in a concentration-dependent manner. However, the underlying mechanism of the PRC1 proteins regulating the spindle elongation has not been explained up to now. Here, we use a simplified model, where only the two important participants (kinesin-5 Eg5 motors and PRC1 proteins) are considered, to study the spindle elongation during anaphase B. We first show that only in the appropriate range of the PRC1 concentration can the spindle elongation complete properly. Furthermore, we explore the underlying mechanism of PRC1 as a regulator for spindle elongation.


Assuntos
Anáfase , Cinesinas , Humanos , Cinesinas/metabolismo , Fuso Acromático/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos
9.
World J Pediatr ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019382

RESUMO

BACKGROUND: Prenatal bisphenol exposure has been reported to be associated with lower birth weight and obesity-related indicators in early childhood. These findings warrant an investigation of the relationship between prenatal bisphenol exposure and the dynamic growth of offspring. This study aimed to evaluate the relationship of maternal bisphenol concentration in urine with the body mass index (BMI) growth trajectory of children aged up to two years and to identify the critical exposure periods. METHODS: A total of 826 mother-offspring pairs were recruited from Wuhan Children's Hospital between November 2013 and March 2015. Maternal urine samples collected during the first, second, and third trimesters were analyzed for bisphenol A (BPA), bisphenol S, and bisphenol F (BPF) concentrations. Measurements of length and weight were taken at 0, 1, 3, 6, 8, 12, 18, and 24 months. Children's BMI was standardized using the World Health Organization reference, and group-based trajectory modeling was used to identify BMI growth trajectories. The associations between prenatal bisphenol exposure and BMI growth trajectory patterns were assessed using multinomial logistic regression models. RESULTS: The BMI growth trajectories of the 826 children were categorized into four patterns: low-stable (n = 134, 16.2%), low-increasing (n = 142, 17.2%), moderate-stable (n = 350, 42.4%), and moderate-increasing (n = 200, 24.2%). After adjusting for potential confounders, we observed that prenatal exposure to BPA during the second trimester [odds ratio (OR) = 2.20, 95% confidence interval (CI) = 1.09-4.43] and BPF during the third trimester (OR = 3.28, 95% CI = 1.55-6.95) at the highest quartile concentration were associated with an increased likelihood of the low-increasing BMI trajectory. Furthermore, in the subgroup analysis by infant sex, the positive association between the highest quartile of prenatal average urinary BPF concentration during the whole pregnancy and the low-increasing BMI trajectory was found only in girls (OR = 2.82, 95% CI = 1.04-7.68). CONCLUSION: Our study findings suggest that prenatal exposure to BPA and BPF (a commonly used substitute for BPA) is associated with BMI growth trajectories in offspring during the first two years, increasing the likelihood of the low-increasing pattern. Video Abstract (MP4 120033 kb).

10.
Opt Express ; 31(18): 29986-29993, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710787

RESUMO

Optical remote sensing provides optimal technical support for the detection and quantification of floating macroalgae. Although the spatial scale effect on optical estimation of floating macroalgae coverage or biomass from different images has been clarified, the directional effect on them has not been investigated until now. In this study, synchronous multi-angle imaging spectroradiometer (MISR) and MODIS images were collected to investigate the multi-angle remote sensing of green tides. A dual thresholding method, based on the difference vegetation index (DVI) and scaled algae index, was employed to determine algae pixels. In addition, piecewise empirical models were developed for MISR and MODIS images to estimate the total biomass of green tides based on laboratory measurements and DVI values. Comparative analysis of DVI histograms and total biomass shows that the sensor zenith angle has a significant impact on the quantification of green tides. Under the same solar conditions, as the sensor zenith angle increases, the optical signals received from algae pixels weaken, resulting in a decrease in the quantification of green tides. In future research, the observation geometry (including the solar/sensor zenith angle and the solar/sensor azimuth angle) needs to be considered to improve the accuracy of optical remote detection and quantification of floating macroalgae.


Assuntos
Alga Marinha , Ulva , Biomassa
11.
Clin Pharmacol Ther ; 114(6): 1274-1284, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37634125

RESUMO

Immunogenicity is critical for biologics. However, reference biologics labeling documents do not necessarily mention immunogenicity impact, rendering the development of biosimilars more challenging. We aimed to investigate the comparative assessment of immunogenicity profiles between biosimilars and their respective reference biologics in the review reports of the biosimilar monoclonal antibody applications approved by the Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA) as of March 13, 2022, covering 22 applications approved between April 5, 2016, and December 17, 2021. The maximum differences in anti-drug antibody (ADA) and neutralizing antibody (NAb) incidences between biosimilars and reference products mostly fell within ± 15% (-13.6% to 12%) and ± 20% (-17.4% to 17.1%, except extreme values of -23.4% and 66.7%), respectively. In comparison with antineoplastic agents, more immunosuppressants had ADA-positive (11/11, 100.0% vs. 8/10, 80.0%)/NAb-positive (11/11, 100.0% vs. 3/10, 30.0%) subjects, and the distribution of the aforementioned incidence differences was wider. The investigated biosimilars with available data for analysis demonstrated a high degree of consistency with their reference products in terms of the impact on pharmacokinetic parameters. No increase in immunogenicity was found in available switching studies. Most (16/22, 72.7%) biosimilars were issued post-marketing requirements that were not directly related to immunogenicity concerns. The FDA considered the totality of evidence assessing clinical consequences of immunogenicity differences, if any. Additional information on titers and subgroup analysis may be warranted to elucidate the critical attributes of immunogenicity impact and to aid in forming cost-effective strategies for biosimilar development.


Assuntos
Antineoplásicos , Medicamentos Biossimilares , Estados Unidos , Humanos , Medicamentos Biossimilares/efeitos adversos , Anticorpos Monoclonais/efeitos adversos , United States Food and Drug Administration , Aprovação de Drogas
12.
Carbohydr Polym ; 312: 120809, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059520

RESUMO

This study reveals the genetic and biochemical changes underlying the enhanced hyaluronan (HA) biosynthesis in Streptococcus zooepidemicus. After multiple rounds of atmospheric and room temperature plasma (ARTP) mutagenesis combined with novel bovine serum albumin/cetyltrimethylammonium bromide coupled high-throughput screening assay, the HA yield of the mutant was increased by 42.9% and reached 0.813 g L-1 with a molecular weight of 0.54 × 106 Da within 18 h by shaking flask culture. HA production was increased to 4.56 g L-1 by batch culture in 5-L fermenter. Transcriptome sequencing exhibits that distinct mutants have similar genetic changes. Regulation in direction of metabolic flow into the HA biosynthesis, by enhancing genes responsible for the biosynthesis of HA including hasB, glmU and glmM, weaking downstream gene (nagA and nagB) of UDP-GlcNAc and significantly down-regulating transcription of wall-synthesizing genes, resulting in the accumulation of precursors (UDP-GlcA and UDP-GlcNAc) increased by 39.74% and 119.22%, respectively. These associated regulatory genes may provide control point for engineering of the efficient HA-producing cell factory.


Assuntos
Ácido Hialurônico , Streptococcus equi , Ácido Hialurônico/química , Temperatura , Streptococcus equi/genética , Streptococcus equi/metabolismo , Difosfato de Uridina/metabolismo , Variação Genética
13.
J Clean Prod ; 408: 137042, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37077939

RESUMO

We evaluate the response of global supply chains to carbon emissions through compiling multi-regional input-output (MRIO) models for import and export shocks in 14 countries/territories dominated by the COVID-19 crisis. Instead of traditional production-based inventories, we achieve CO2 emissions inventories based on intermediate inputs and final consumption to analyze the connected environmental impacts. In addition, we adopt the available data up to date to construct inventories of carbon emissions involved in imports and exports from different sectors. The results show that global carbon emissions could be decreased by 6.01% during the COVID-19, while export carbon emissions remained basically unchanged. As a result, imported carbon emissions fell by 5.2%, with the energy products sector most affected by the pandemic. Transport sector witnessed 18.42% carbon emission reduction. The impact of developing countries with a large proportion of resource-based industries is comparatively higher than that of developed countries with the technological advantage. International trade plays a crucial role in the choice of supply chain partners to control carbon emissions. Building a sustainable supply chain and reducing the "trade carbon deficit" between countries/regions requires the coordination of all departments of each country/region to promote the trade of energy-saving products, environmental protection services and environmental services.

14.
Biol Direct ; 18(1): 9, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879344

RESUMO

BACKGROUND: Long-term consumption of an excessive fat and sucrose diet (Western diet, WD) has been considered a risk factor for metabolic syndrome (MS) and cardiovascular disease. Caveolae and caveolin-1 (CAV-1) proteins are involved in lipid transport and metabolism. However, studies investigating CAV-1 expression, cardiac remodeling, and dysfunction caused by MS, are limited. This study aimed to investigate the correlation between the expression of CAV-1 and abnormal lipid accumulation in the endothelium and myocardium in WD-induced MS, and the occurrence of myocardial microvascular endothelial cell dysfunction, myocardial mitochondrial remodeling, and damage effects on cardiac remodeling and cardiac function. METHODS: We employed a long-term (7 months) WD feeding mouse model to measure the effect of MS on caveolae/vesiculo-vacuolar organelle (VVO) formation, lipid deposition, and endothelial cell dysfunction in cardiac microvascular using a transmission electron microscopy (TEM) assay. CAV-1 and endothelial nitric oxide synthase (eNOS) expression and interaction were evaluated using real-time polymerase chain reaction, Western blot, and immunostaining. Cardiac mitochondrial shape transition and damage, mitochondria-associated endoplasmic reticulum membrane (MAM) disruption, cardiac function change, caspase-mediated apoptosis pathway activation, and cardiac remodeling were examined using TEM, echocardiography, immunohistochemistry, and Western blot assay. RESULTS: Our study demonstrated that long-term WD feeding caused obesity and MS in mice. In mice, MS increased caveolae and VVO formation in the microvascular system and enhanced CAV-1 and lipid droplet binding affinity. In addition, MS caused a significant decrease in eNOS expression, vascular endothelial cadherin, and ß-catenin interactions in cardiac microvascular endothelial cells, accompanied by impaired vascular integrity. MS-induced endothelial dysfunction caused massive lipid accumulation in the cardiomyocytes, leading to MAM disruption, mitochondrial shape transition, and damage. MS promoted brain natriuretic peptide expression and activated the caspase-dependent apoptosis pathway, leading to cardiac dysfunction in mice. CONCLUSION: MS resulted in cardiac dysfunction, remodeling by regulating caveolae and CAV-1 expression, and endothelial dysfunction. Lipid accumulation and lipotoxicity caused MAM disruption and mitochondrial remodeling in cardiomyocytes, leading to cardiomyocyte apoptosis and cardiac dysfunction and remodeling.


Assuntos
Cardiopatias , Síndrome Metabólica , Animais , Camundongos , Cavéolas , Caveolina 1/genética , Miócitos Cardíacos , Síndrome Metabólica/etiologia , Dieta Ocidental , Células Endoteliais , Remodelação Ventricular , Lipídeos
15.
BMC Plant Biol ; 23(1): 140, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36915063

RESUMO

BACKGROUND: Chrysanthemum is a popular ornamental plant worldwide. MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factors play an important role in everything from stress resistance to plant growth and development. However, the MYB family of chrysanthemums has not been the subject of a detailed bioinformatics and expression investigation. RESULTS: In this study, we examined 324 CnMYB transcription factors from Chrysanthemum nankingense genome data, which contained 122 Cn1R-MYB, 183 CnR2R3-MYB, 12 Cn3R-MYB, 2 Cn4R-MYB, and 5 atypical CnMYB. The protein motifs and classification of CnMYB transcription factors were analyzed. Among them, motifs 1, 2, 3, and 4 were found to encode the MYB DNA-binding domain in R2R3-MYB proteins, while in other-MYB proteins, the motifs 1, 2, 3, 4, 5, 6, 7, and 8 encode the MYB DNA-binding domain. Among all CnMYBs, 44 genes were selected due to the presence of CpG islands, while methylation is detected in three genes, including CnMYB9, CnMYB152, and CnMYB219. We analyzed the expression levels of each CnMYB gene in ray floret, disc floret, flower bud, leaf, stem, and root tissues. Based on phylogenetic analysis and gene expression analysis, three genes appeared likely to control cellulose and lignin synthesis in stem tissue, and 16 genes appeared likely to regulate flowering time, anther, pollen development, and flower color. Fifty-one candidate genes that may be involved in stress response were identified through phylogenetic, stress-responseve motif of promoter, and qRT-PCR analyses. According to genes expression levels under stress conditions, six CnMYB genes (CnMYB9, CnMYB172, CnMYB186, CnMYB199, CnMYB219, and CnMYB152) were identified as key stress-responsive genes. CONCLUSIONS: This research provides useful information for further functional analysis of the CnMYB gene family in chrysanthemums, as well as offers candidate genes for further study of cellulose and lignin synthesis, flowering traits, salt and drought stress mechanism.


Assuntos
Chrysanthemum , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas de Plantas/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Lignina/metabolismo , Filogenia , DNA , Regulação da Expressão Gênica de Plantas
16.
Phytomedicine ; 110: 154597, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603340

RESUMO

BACKGROUND: Retinoblastoma, the most common pediatric intraocular malignancy, can develop during embryogenesis, with most children being diagnosed at 3-4 years of age. Multimodal therapies are typically associated with high levels of cytotoxicity and side effects. Therefore, the development of novel treatments with minimal side effects is crucial. Magnolol has a significant anti-tumor effect on various cancers. However, its antitumor effect on retinoblastoma remains unclear. PURPOSE: The study aimed to determine the effects of magnolol on the regulation of EMT, migration, invasion, and cancer progression in retinoblastoma and the modulation of miR-200c-3p expression and the Wnt/ zinc finger E-box binding homeobox 1 (ZEB1)/E-cadherin axis in vivo and in vitro. METHODS: The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay was used to evaluate magnolol-induced cell toxicity in the Y79 retinoblastoma cell line. Flow cytometry and immunostaining assays were performed to investigate the magnolol-regulated mitochondrial membrane potential and the intracellular and mitochondrial reactive oxygen species levels in Y79 retinoblastoma cells. Orthotopic and subcutaneous xenograft experiments were performed in eight-week-old male null mice to study retinoblastoma progression and metastasis. In situ hybridization and quantitative reverse transcription polymerase chain reaction (RT-qPCR) assays were performed to evaluate the level of the anti-cancer miRNA miR-200c-3p. The mRNA and protein levels of E-cadherin, ß-catenin, α-smooth muscle actin (α-SMA), fibronectin-1, and ZEB1 were analyzed using RT-qPCR, immunoblot, immunocytochemistry, and immunohistochemistry assays in vitro and in vivo. RESULTS: Magnolol increased E-cadherin levels and reduced the activation of the EMT signaling pathway, EMT, tumor growth, metastasis, and cancer progression in the Y79 retinoblastoma cell line as well as in the orthotopic and subcutaneous xenograft animal models. Furthermore, magnolol increased the expression of miR-200c-3p. Our results demonstrate that miRNA-200c-3p inhibits EMT progression through the Wnt16/ß-catenin/ZEB1/E-cadherin axis, and the ZEB1 silencing response shows that miR-200c-3p regulates ZEB1-mediated EMT in retinoblastoma. CONCLUSION: Magnolol has an antitumor effect by increasing E-cadherin and miRNA-200c-3p expression to regulate ZEB1-mediated EMT and cancer progression in retinoblastoma. The anti-tumor effect of magnolol by increasing E-cadherin and miRNA-200c-3p expression to regulate ZEB1-mediated EMT and cancer progression in retinoblastoma has been elucidated for the first time.


Assuntos
MicroRNAs , Neoplasias da Retina , Retinoblastoma , Animais , Camundongos , Humanos , Masculino , Transição Epitelial-Mesenquimal/genética , Retinoblastoma/tratamento farmacológico , Retinoblastoma/genética , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Caderinas/metabolismo , Neoplasias da Retina/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
17.
BMC Bioinformatics ; 23(1): 521, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471248

RESUMO

BACKGROUND: Protein-protein interactions are widespread in biological systems and play an important role in cell biology. Since traditional laboratory-based methods have some drawbacks, such as time-consuming, money-consuming, etc., a large number of methods based on deep learning have emerged. However, these methods do not take into account the long-distance dependency information between each two amino acids in sequence. In addition, most existing models based on graph neural networks only aggregate the first-order neighbors in protein-protein interaction (PPI) network. Although multi-order neighbor information can be aggregated by increasing the number of layers of neural network, it is easy to cause over-fitting. So, it is necessary to design a network that can capture long distance dependency information between amino acids in the sequence and can directly capture multi-order neighbor information in protein-protein interaction network. RESULTS: In this study, we propose a multi-hop neural network (LDMGNN) model combining long distance dependency information to predict the multi-label protein-protein interactions. In the LDMGNN model, we design the protein amino acid sequence encoding (PAASE) module with the multi-head self-attention Transformer block to extract the features of amino acid sequences by calculating the interdependence between every two amino acids. And expand the receptive field in space by constructing a two-hop protein-protein interaction (THPPI) network. We combine PPI network and THPPI network with amino acid sequence features respectively, then input them into two identical GIN blocks at the same time to obtain two embeddings. Next, the two embeddings are fused and input to the classifier for predict multi-label protein-protein interactions. Compared with other state-of-the-art methods, LDMGNN shows the best performance on both the SHS27K and SHS148k datasets. Ablation experiments show that the PAASE module and the construction of THPPI network are feasible and effective. CONCLUSIONS: In general terms, our proposed LDMGNN model has achieved satisfactory results in the prediction of multi-label protein-protein interactions.


Assuntos
Redes Neurais de Computação , Proteínas , Sequência de Aminoácidos , Proteínas/metabolismo , Mapas de Interação de Proteínas , Aminoácidos/metabolismo
18.
Front Nutr ; 9: 1005857, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407514

RESUMO

Background: Dietary fatty acids have been shown to be associated with the development of cognition. However, research on the role of fatty acid intake in dietary patterns and fatty acid patterns (FAPs) in the development of cognitive function is limited. The aim of this study was to explore the correlation between dietary patterns and FAPs and to provide available evidence for preventing mild cognitive impairment (MCI) through these patterns. Materials and methods: The 973 participants aged between 65 and 85 were recruited from 2020 to 2021 for this multicenter research in Beijing. Neuropsychological tests were used for cognitive evaluation, and data of dietary intake in the past 12 months were collected with semi-quantitative food frequency questionnaire. The erythrocyte membrane fatty acid profile was tested by chromatography and mass spectrometry lipid profiling. Factor analysis was used to derive the main dietary patterns and FAPs. Pearson's correlation or Spearman's correlation was used to explore the association between dietary patterns and FAPs. Binary logistic regression was applied to examine the relationship between patterns and cognitive function. Results: Six dietary patterns and six FAPs were identified, explaining 53.4 and 80.9% of the total variance separately. After adjusting all potential confounders, T3 of the pattern 1 and FAP2 were the independent protect factors for MCI, respectively (OR 0.601, 95% CI [0.395, 0.914]; OR 0.108, 95% CI [0.019, 0.623]). Rich of SM (26:0), SM (24:1), and SM (26:1) is the characteristic of FAP2. A positive correlation was found between component scores of dietary pattern1 and FAP2 (r = 0.441, p = 0.001). People who adhered to a reasonable intake of animal flesh consumed more various long-chain fatty acids as well. Conclusion: The erythrocyte membrane metabolites, SM (26:0), SM (24:1), and SM (26:1), might function as early biomarkers for predicting or monitoring of cognitive aging in the elderly. The dietary pattern with recommended animal flesh consumption was significantly associated with FAP characterized by very long-chain SMs. This dietary pattern affected FAP, which might achieve the ultimate goal of neuroprotection through the very long-chain SMs. A rational intake of dietary fatty acids might be an effective way on preventing MCI in the elderly.

19.
ACS Appl Mater Interfaces ; 14(33): 38056-38066, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35943382

RESUMO

Conjugated polymers with narrow band gaps are particularly useful for sorting and discriminating semiconducting single-walled carbon nanotubes (s-SWCNT) due to the low charge carrier injection barrier for transport. In this paper, we report two newly synthesized narrow-band-gap conjugated polymers (PNDITEG-TVT and PNDIC8TEG-TVT) based on naphthalene diimide (NDI) and thienylennevinylene (TVT) building blocks, decorated with different polar side chains that can be used for dispersing and discriminating s-SWCNT. Compared with the mid-band-gap conjugated polymer PNDITEG-AH, which is composed of naphthalene diimide (NDI) and head-to-head bithiophene building blocks, the addition of a vinylene linker eliminates the steric congestion present in head-to-head bithiophene, which promotes backbone planarity, extending the π-conjugation length and narrowing the band gap. Cyclic voltammetry (CV) and density functional theory (DFT) calculations suggest that inserting a vinylene group in a head-to-head bithiophene efficiently lifts the highest occupied molecular orbital (HOMO) level (-5.60 eV for PNDITEG-AH, -5.02 eV for PNDITEG-TVT, and -5.09 eV for PNDIC8TEG-TVT). All three polymers are able to select for s-SWCNT, as evidenced by the sharp transitions in the absorption spectra. Field-effect transistors (FETs) fabricated with the polymer:SWCNT inks display p-dominant properties, with higher hole mobilities when using the NDI-TVT polymers as compared with PNDITEG-AH (0.6 cm2 V-1 s-1 for HiPCO:PNDITEG-AH, 1.5 cm2 V-1 s-1 for HiPCO:PNDITEG-TVT, and 2.3 cm2 V-1 s-1 for HiPCO:PNDIC8TEG-TVT). This improvement is due to the better alignment of the HOMO level of PNDITEG-TVT and PNDIC8TEG-TVT with that of the dominant SWCNT specie.

20.
Environ Sci Technol ; 56(15): 10567-10576, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35819895

RESUMO

With the rising demands on supply chain transparency and food security, the rapid outspread of the Internet of Things (IoT) to improve logistical efficiency, and the rising penetration of sensor technology into daily life, the extensive integration of the IoT in the food sector is well anticipated. A perspective on potential life cycle trade-offs in regard to the type of integration is necessary. We conduct life cycle assessment (LCA) integrated with shelf life-food loss (SL-FL) models, showing an overall 5-fold leverage on carbon reduction, which is diet dependent and a function of income. Meat presents the highest leverage, 35 ± 11-times, owing to its high carbon footprint. Two-thirds (65%) of global sensors (1 billion) engaged in monitoring fruits and vegetables can mitigate less than 7% of the total reduced carbon emissions. Despite the expected carbon emission reductions, widespread adoption of the IoT faces multiple challenges such as high costs, difficulties in social acceptance, and regional variability in technological development. Furthermore, changes in the distribution of transportation resources and dealer service models, requirements regarding the accuracy of sensor data analysis, efficient and persistent operation of devices, development of agricultural infrastructure, and farmer education and training have all increased uncertainty. Nonetheless, the research trend in smart sensors toward smaller chips and the potential integration of machine learning or blockchain as further steps make it possible to leverage these advantages to facilitate market penetration. These insights facilitate the future optimization of the application of IoT sensors for sustainability.


Assuntos
Carbono , Abastecimento de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...