Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1357580, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706699

RESUMO

Background and objective: Type 2 Diabetes Mellitus (T2DM) with insulin resistance (IR) is prone to damage the vascular endothelial, leading to the formation of vulnerable carotid plaques and increasing ischemic stroke (IS) risk. The purpose of this study is to develop a nomogram model based on carotid ultrasound radiomics for predicting IS risk in T2DM patients. Methods: 198 T2DM patients were enrolled and separated into study and control groups based on IS history. After manually delineating carotid plaque region of interest (ROI) from images, radiomics features were identified and selected using the least absolute shrinkage and selection operator (LASSO) regression to calculate the radiomics score (RS). A combinatorial logistic machine learning model and nomograms were created using RS and clinical features like the triglyceride-glucose index. The three models were assessed using area under curve (AUC) and decision curve analysis (DCA). Results: Patients were divided into the training set and the testing set by the ratio of 0.7. 4 radiomics features were selected. RS and clinical variables were all statically significant in the training set and were used to create a combination model and a prediction nomogram. The combination model (radiomics + clinical nomogram) had the largest AUC in both the training set and the testing set (0.898 and 0.857), and DCA analysis showed that it had a higher overall net benefit compared to the other models. Conclusions: This study created a carotid ultrasound radiomics machine-learning-based IS risk nomogram for T2DM patients with carotid plaques. Its diagnostic performance and clinical prediction capabilities enable accurate, convenient, and customized medical care.


Assuntos
Diabetes Mellitus Tipo 2 , AVC Isquêmico , Nomogramas , Ultrassonografia , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/etiologia , AVC Isquêmico/epidemiologia , Idoso , Ultrassonografia/métodos , Fatores de Risco , Aprendizado de Máquina , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/patologia , Medição de Risco/métodos , Ultrassonografia das Artérias Carótidas , Radiômica
2.
MedComm (2020) ; 5(4): e534, 2024 Apr.
Artigo em Italiano | MEDLINE | ID: mdl-38585235

RESUMO

Autoimmune uveitis (AU) is a kind of immune-mediated disease resulting in irreversible ocular damage and even permanent vision loss. However, the precise mechanism underlying dynamic immune changes contributing to disease initiation and progression of AU remains unclear. Here, we induced an experimental AU (EAU) model with IRBP651-670 and found that day[D]14 was the inflammatory summit with remarking clinical and histopathological manifestations and the activation of retinal microglia exhibited a time-dependent pattern in the EAU course. We conducted single-cell RNA sequencing of retinal immune cells in EAU mice at four time points and found microglia constituting the largest proportion, especially on D14. A novel inflammatory subtype (Cd74high Ccl5high) of retinal microglia was identified at the disease peak that was closely associated with modulating immune responses. In vitro experiments indicated that inflammatory stimuli induced proinflammatory microglia with the upregulation of CD74 and CCL5, and CD74 overexpression in microglia elicited their proinflammatory phenotype via nuclear factor-kappa B signaling that could be attenuated by the treatment of neutralizing CCL5 antibody to a certain extent. In-vivo blockade of Cd74 and Ccl5 effectively alleviated retinal microglial activation and disease phenotype of EAU. Therefore, we propose targeting CD74 and CCL5 of retinal microglia as promising strategies for AU treatment.

3.
Nat Commun ; 14(1): 8286, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092787

RESUMO

Over the satellite era, Antarctic sea ice exhibited an overall long-term increasing trend, contrary to the Arctic reduction under global warming. However, the drastic decline of Antarctic sea ice in 2014-2018 raises questions about its interannual and decadal-scale variabilities, which are poorly understood and predicted. Here, we identify an Antarctic sea ice decadal oscillation, exhibiting a quasi-period of 8-16 years, that is anticorrelated with the Pacific Quasi-Decadal Oscillation (r = -0.90). By combining observations, Coupled Model Intercomparison Project historical simulations, and pacemaker climate model experiments, we find evidence that the synchrony between the sea ice decadal oscillation and Pacific Quasi-Decadal Oscillation is linked to atmospheric poleward-propagating Rossby wave trains excited by heating in the central tropical Pacific. These waves weaken the Amundsen Sea Low, melting sea ice due to enhanced shortwave radiation and warm advection. A Pacific Quasi-Decadal Oscillation-based regression model shows that this tropical-polar teleconnection carries multi-year predictability.

4.
Cell Mol Immunol ; 20(11): 1379-1392, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37828081

RESUMO

Vogt-Koyanagi-Harada (VKH) disease is a leading cause of blindness in young and middle-aged people. However, the etiology of VKH disease remains unclear. Here, we performed the first trio-based whole-exome sequencing study, which enrolled 25 VKH patients and 50 controls, followed by a study of 2081 VKH patients from a Han Chinese population to uncover detrimental mutations. A total of 15 de novo mutations in VKH patients were identified, with one of the most important being the membrane palmitoylated protein 2 (MPP2) p.K315N (MPP2-N315) mutation. The MPP2-N315 mutation was highly deleterious according to bioinformatic predictions. Additionally, this mutation appears rare, being absent from the 1000 Genome Project and Genome Aggregation Database, and it is highly conserved in 10 species, including humans and mice. Subsequent studies showed that pathological phenotypes and retinal vascular leakage were aggravated in MPP2-N315 mutation knock-in or MPP2-N315 adeno-associated virus-treated mice with experimental autoimmune uveitis (EAU). In vitro, we used clustered regularly interspaced short palindromic repeats (CRISPR‒Cas9) gene editing technology to delete intrinsic MPP2 before overexpressing wild-type MPP2 or MPP2-N315. Levels of cytokines, such as IL-1ß, IL-17E, and vascular endothelial growth factor A, were increased, and barrier function was destroyed in the MPP2-N315 mutant ARPE19 cells. Mechanistically, the MPP2-N315 mutation had a stronger ability to directly bind to ANXA2 than MPP2-K315, as shown by LC‒MS/MS and Co-IP, and resulted in activation of the ERK3/IL-17E pathway. Overall, our results demonstrated that the MPP2-K315N mutation may increase susceptibility to VKH disease.


Assuntos
Síndrome Uveomeningoencefálica , Animais , Humanos , Camundongos , Pessoa de Meia-Idade , Cromatografia Líquida , Sequenciamento do Exoma , Interleucina-17/genética , Mutação de Sentido Incorreto , Espectrometria de Massas em Tandem , Síndrome Uveomeningoencefálica/genética , Síndrome Uveomeningoencefálica/epidemiologia , Fator A de Crescimento do Endotélio Vascular
5.
Inorg Chem ; 62(32): 13103-13117, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37534985

RESUMO

In order to promote the sustainable development of nuclear energy through thorium (Th(IV)) recycling, we synthesized SiO2-coated magnetic functional nanocomposites (SiO2@Fe3O4) that were modified with 2,9-diamide-1,10-phenanthroline (DAPhen) to serve as an adsorbent for Th(IV) removal. SiO2@Fe3O4-DAPhen showed effective Th(IV) adsorption in both weakly and strongly acidic solutions. Owing to its porous structure that facilitated rapid adsorption kinetics, equilibrium was achieved within 5 and 0.5 min at pH 3 and 1 mol L-1 HNO3, respectively. In weakly acidic solutions, Th(IV) primarily formed chemical coordination bonds with DAPhen groups, while in strongly acidic solutions, the dominant interaction was electrostatic attraction. Density functional theory (DFT) calculations indicated that electrostatic attraction was weaker compared to chemical coordination, resulting in reduced diffusion resistance and consequently faster adsorption rates in strongly acidic solutions. Furthermore, SiO2@Fe3O4-DAPhen exhibited a high adsorption capacity for Th(IV); it removed Th(IV) through chelation and electrostatic attraction at pH 3 and 1 mol L-1 HNO3, with maximum adsorption capacities of 833.3 and 1465.7 mg g-1, respectively. SiO2@Fe3O4-DAPhen also demonstrated excellent tolerance to salinity, adsorption selectivity, and radiation resistance, thereby highlighting its practical potential for Th(IV) removal in diverse contaminated water sources. Hence, SiO2@Fe3O4-DAPhen represents a promising choice for the rapid and efficient removal of Th(IV).

6.
J Biol Chem ; 299(4): 103043, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36803959

RESUMO

Hyperlactatemia often occurs in critically ill patients during severe sepsis/septic shock and is a powerful predictor of mortality. Lactate is the end product of glycolysis. While hypoxia due to inadequate oxygen delivery may result in anaerobic glycolysis, sepsis also enhances glycolysis under hyperdynamic circulation with adequate oxygen delivery. However, the molecular mechanisms involved are not fully understood. Mitogen-activated protein kinase (MAPK) families regulate many aspects of the immune response during microbial infections. MAPK phosphatase (MKP)-1 serves as a feedback control mechanism for p38 and JNK MAPK activities via dephosphorylation. Here, we found that mice deficient in Mkp-1 exhibited substantially enhanced expression and phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) 3, a key enzyme that regulates glycolysis following systemic Escherichia coli infection. Enhanced PFKFB3 expression was observed in a variety of tissues and cell types, including hepatocytes, macrophages, and epithelial cells. In bone marrow-derived macrophages, Pfkfb3 was robustly induced by both E. coli and lipopolysaccharide, and Mkp-1 deficiency enhanced PFKFB3 expression with no effect on Pfkfb3 mRNA stability. PFKFB3 induction was correlated with lactate production in both WT and Mkp-1-/- bone marrow-derived macrophage following lipopolysaccharide stimulation. Furthermore, we determined that a PFKFB3 inhibitor markedly attenuated lactate production, highlighting the critical role of PFKFB3 in the glycolysis program. Finally, pharmacological inhibition of p38 MAPK, but not JNK, substantially attenuated PFKFB3 expression and lactate production. Taken together, our studies suggest a critical role of p38 MAPK and MKP-1 in the regulation of glycolysis during sepsis.


Assuntos
Fosfatase 1 de Especificidade Dupla , Glicólise , Sepse , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Camundongos , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Escherichia coli/metabolismo , Lactatos , Lipopolissacarídeos , Oxigênio , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Sepse/genética , Fosfofrutoquinase-2/metabolismo
7.
Sci Total Environ ; 866: 161378, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36610624

RESUMO

In order to recycle Uranium (U) for the sustainable development of nuclear energy, diamide bipyridine (DABP) modified hierarchically porous carbon doped boron nitride (BCN-DABP) was synthesized as an adsorbent for the multipurpose removal of U. BCN-DABP displayed good adsorption performance for U in both weakly and highly acidic solutions. The hierarchically porous structure endowed BCN-DABP with ultrafast adsorption kinetics, and adsorption reached equilibrium within 180.0 and 0.5 min under pH = 4.0 and 2.00 mol L-1 HNO3, respectively. Moreover, combination of adsorption isotherm studies and DFT calculations showed that BCN-DABP possessed high adsorption capacities for U and displayed different adsorption performance under different conditions. BCN-DABP adsorbed UO22+ by chelation and electrostatic attraction under pH 4.0 and 2.00 mol L-1 HNO3, the maximum adsorption capacity under two conditions reached 818.7 and 1296.7 mg g-1, respectively. As a result, BCN-DABP is expected to be used for the rapid and efficient removal of U in various kinds of contaminated water. Furthermore, excellent salinity tolerance, good adsorption selectivity, and outstanding radiation resistance also endowed BCN-DABP with great practical potential for removing U in radioactive contaminated water as well as high level liquid waste.

8.
Eur J Clin Nutr ; 77(1): 75-81, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35974138

RESUMO

BACKGROUND & OBJECTIVE: To investigate the causal effects of plasma Polyunsaturated fatty acids (PUFAs) on the risk of juvenile idiopathic arthritis (JIA) and ocular comorbidity through Mendelian randomization (MR) analysis. METHODS: Genetic variants (formerly single nucleotide polymorphisms, SNPs) that are strongly associated with PUFAs levels (P < 5×10-8) were selected as instrumental variables. Summary-level MR was performed with outcome estimates for JIA (n = 31,142) and JIA associated iridocyclitis (n = 94,197). The inverse variance-weighted (IVW) method was employed as the main approach to combine the estimation for each SNP. Two set of models with summary statistics were conducted and multiple sensitivity analyses were applied for testing of pleiotropic bias. RESULTS: In model 1, genetically predicted n-6 PUFAs linoleic acid (LA) and arachidonic acid (AA) were associated with lower and higher risk of JIA associated iridocyclitis using IVW (ORLA = 0.940, 95% CI: 0.895-0.988, P = 0.015; ORAA = 1.053, 95% CI: 1.007-1.101, P = 0.024). No such association was observed between each plasma PUFAs and JIA susceptibility (P > 0.05). In further MR analysis, results from model 2 also showed a consistent trend. Besides, multiple sensitivity analyses revealed that there was no obvious evidence for unknown pleiotropy (P > 0.05). CONCLUSIONS: Our MR study provides genetic evidence on the possible causality that plasma LA level might protect against JIA associated iridocyclitis, whereas AA was responsible for opposite effect.


Assuntos
Ácido Araquidônico , Artrite Juvenil , Iridociclite , Ácido Linoleico , Humanos , Ácido Araquidônico/sangue , Ácido Araquidônico/genética , Artrite Juvenil/sangue , Artrite Juvenil/epidemiologia , Artrite Juvenil/genética , Causalidade , Comorbidade , Ácidos Graxos Insaturados , Iridociclite/sangue , Iridociclite/genética , Ácido Linoleico/sangue , Ácido Linoleico/genética , Análise da Randomização Mendeliana/métodos , Polimorfismo de Nucleotídeo Único
9.
J Immunol ; 209(5): 991-1000, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36130126

RESUMO

Akt-1 and Akt-2 are the major isoforms of the serine/threonine Akt family that play a key role in controlling immune responses. However, the involvement of Akt-1 and Akt-2 isoforms in antifungal innate immunity is completely unknown. In this study, we show that Akt2 -/-, but not Akt1 -/-, mice are protected from lethal Candida albicans infection. Loss of Akt-2 facilitates the recruitment of neutrophils and macrophages to the spleen and increases reactive oxygen species expression in these cells. Treating C57BL/6 mice with a specific inhibitor for Akt-2, but not Akt-1, provides protection from lethal C. albicans infection. Our data demonstrate that Akt-2 inhibits antifungal innate immunity by hampering neutrophil and macrophage recruitment to spleens and suppressing oxidative burst, myeloperoxidase activity, and NETosis. We thus describe a novel role for Akt-2 in the regulation of antifungal innate immunity and unveil Akt-2 as a potential target for the treatment of fungal sepsis.


Assuntos
Candida albicans , Candidíase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Antifúngicos , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos , Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina/metabolismo , Treonina/metabolismo
10.
Front Immunol ; 13: 905211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936005

RESUMO

N6-metyladenosine (m6A) RNA methylation has been proven to be involved in diverse biological processes, but its potential roles in the development of lipopolysaccharide (LPS) induced retinal pigment epithelium (RPE) inflammation have not been revealed. In this study, we explored the effects and underlying mechanisms of methyltransferase-like 3 (METTL3) in LPS stimulated RPE cells. Proliferation of METTL3-silenced RPE cells was examined by Cell counting kit-8 (CCK8) and 5-Ethynyl-2´-Deoxyuridine (Edu). Expression of tight junction proteins ZO-1 and Occludin, and secretion of inflammatory factors interleukins (IL)-1, 6 and 8 were detected by Western blotting or Enzyme-linked immunosorbent assay (ELISA). RNA sequencing and methylated RNA immunoprecipitation (MeRIP) sequencing were used to analyze the target gene nuclear receptor subfamily 2 group F member 1 (NR2F1) of METTL3. Our results showed that both human RPE (hRPE) cells and ARPE19 cells exhibited inhibited proliferation, tight junction protein expression, and increased inflammatory factor secretion after METTL3 silencing. Mechanistically, we found that NR2F1, as a METTL3-methylated target gene, inhibits Occludin level and promotes IL-6 secretion of RPE cells in an m6A-dependent manner. Interestingly, NR2F1 deficiency reversed the decreased Occludin expression and increased IL-6 secretion in METTL3-defective RPE cells. In conclusion, our study revealed that METTL3 attenuates RPE cell inflammation by methylating NR2F1, suggesting the critical role of METTL3 in RPE cells.


Assuntos
Fator I de Transcrição COUP/metabolismo , Lipopolissacarídeos , Metiltransferases/metabolismo , Epitélio Pigmentado da Retina , Humanos , Inflamação/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Ocludina/metabolismo , RNA/metabolismo , Epitélio Pigmentado da Retina/metabolismo
11.
Invest Ophthalmol Vis Sci ; 63(8): 25, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35895036

RESUMO

Purpose: Retinal microglia promote angiogenesis and vasculopathy in oxygen-induced retinopathy (OIR); however, its specific molecular mechanism in the formation of retinal angiogenesis remains unclear. The lectin galactoside-binding soluble 3 binding protein (LGALS3BP), a member of the scavenger receptor cysteine-rich (SRCR) domain protein family, is involved in tumor neovascularization, and we therefore hypothesized that LGALS3BP plays an active role in microglia-induced angiogenesis. Methods: The expression of LGALS3BP in microglia was detected by immunofluorescence, RT-qPCR, and western blotting. Functional assays of human umbilical vein endothelial cells (HUVECs) such as migration, proliferation, and tube formation were measured by Transwell, EdU, and Matrigel assays. Angiogenesis-related factors and PI3K/AKT levels were detected by western blotting. The relationship between LGALS3BP and PI3K or HIF-1α was investigated by immunoprecipitation. Results: Our results showed that the expression of LGALS3BP was significantly increased in microglia surrounding neovascularization of the OIR mice and was also upregulated in human microglial clone 3 (HMC3) cells after hypoxia. Moreover, HUVECs co-cultured with hypoxic HMC3 cells showed increased migration, proliferation, and tube formation, as well as levels of angiogenesis-related factor. However, the proangiogenic ability and angiogenesis-related factor expression of HMC3 cells was suppressed after silencing LGALS3BP. LGALS3BP induces the upregulation of angiogenesis-related factors through the PI3K/AKT pathway and then promotes angiogenesis in microglia. Conclusions: Collectively, our findings suggest that LGALS3BP in microglia plays an important role in angiogenesis, suggesting a potential therapeutic target of LGALS3BP for angiogenesis.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lectinas , Camundongos , Microglia/metabolismo , Neovascularização Patológica/metabolismo , Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
12.
Physiol Rep ; 10(11): e15342, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35674115

RESUMO

The hallmark of pulmonary hypertension (PH) is vascular remodeling. We have previously shown that human pulmonary microvascular endothelial cells (hPMVEC) respond to hypoxia with epidermal growth factor (EGF) mediated activation of the receptor tyrosine kinase, EGF receptor (EGFR), resulting in arginase-2 (Arg2)-dependent proliferation. We hypothesized that the release of EGF by hPMVEC could result in the proliferation of human pulmonary arterial smooth muscle cells (hPASMC) via activation of EGFR on the hPASMC leading to Arg2 up-regulation. To test this hypothesis, we used conditioned media (CM) from hPMVEC grown either in normoxia (NCM) or hypoxia (HCM). Human PASMC were incubated in normoxia with either HCM or NCM, and HCM caused significant induction of Arg2 and viable cell numbers. When HCM was generated with either an EGF-neutralizing antibody or an EGFR blocking antibody the resulting HCM did not induce Arg2 or increase viable cell numbers in hPASMC. Adding an EGFR blocking antibody to HCM, prevented the HCM-induced increase in Arg2 and viable cell numbers. HCM induced robust phosphorylation of hPASMC EGFR. When hPASMC were transfected with siRNA against EGFR the HCM-induced increase in viable cell numbers was prevented. When hPASMC were treated with the arginase antagonist nor-NOHA, the HCM-induced increase in viable cell numbers was prevented. These data suggest that hypoxic hPMVEC releases EGF, which activates hPASMC EGFR leading to Arg2 protein expression and an increase in viable cell numbers. We speculate that EGF neutralizing antibodies or EGFR blocking antibodies represent potential therapeutics to prevent and/or attenuate vascular remodeling in PH associated with hypoxia.


Assuntos
Fator de Crescimento Epidérmico , Hipertensão Pulmonar , Arginase/metabolismo , Hipóxia Celular/fisiologia , Proliferação de Células , Células Endoteliais/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Humanos , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Remodelação Vascular
13.
Anal Chem ; 94(20): 7191-7199, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35549240

RESUMO

In this study, upon potassium (K) element doping, the electrochemiluminescence (ECL) excitation potential of graphitic carbon nitride (g-C3N4) obviously shifted from -1.57 to -0.74 V. Compared with other reported methods, this work was the first one that could reduce the ECL excitation potential of g-C3N4 to below the critical value of -0.9 V. It could more effectively overcome electrode passivation and significantly improve the ECL intensity and stability. Meanwhile, the lower excitation potential could significantly reduce other side reactions caused by high voltage, and the introduction of the K element could obviously increase the water solubility to shorten the preparation time. The apparent decrease of the excitation potential was due to the doping of the K element, which could reduce the band gap, increase the in-plane spacing, and expand π-conjugated systems. Furthermore, using K-doped g-C3N4 with highly stable electrochemiluminescence at lower potential as an emitter, a biosensor for microRNA-141 (miRNA-141) sensitive detection was constructed with the assistance of an innovative nicking enzyme-assisted strand displacement amplification (N-SDA). Compared to the traditional SDA, a nicking enzyme was introduced to obviously improve the utilization rate of the fuel chain and increase the number of cycles, finally resulting in higher signal amplification efficiency. Therefore, the constructed biosensor showed excellent performance in the ultrasensitive detection of miRNA-141 with the limit of detection (LOD) being 44.8 aM. This work gave a more effective means to obviously improve the ECL property of g-C3N4 caused by electrode passivation and provided a more efficient and convenient detection method for biochemical analysis.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Grafite , Limite de Detecção , Medições Luminescentes/métodos , MicroRNAs/análise , Compostos de Nitrogênio
14.
J Biol Chem ; 298(5): 101938, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35429501

RESUMO

Mitogen-activated protein kinase phosphatase 1 (Mkp-1) KO mice produce elevated cytokines and exhibit increased mortality and bacterial burden following systemic Escherichia coli infection. To understand how Mkp-1 affects immune defense, we analyzed the RNA-Seq datasets previously generated from control and E. coli-infected Mkp-1+/+ and Mkp-1-/- mice. We found that E. coli infection markedly induced programmed death-ligand 1 (PD-L1) expression and that Mkp-1 deficiency further amplified PD-L1 expression. Administration of a PD-L1-neutralizing monoclonal antibody (mAb) to Mkp-1-/- mice increased the mortality of the animals following E. coli infection, although bacterial burden was decreased. In addition, the PD-L1-neutralizing mAb increased serum interferon (IFN)-γ and tumor necrosis factor alpha, as well as lung- and liver-inducible nitric oxide synthase levels, suggesting an enhanced inflammatory response. Interestingly, neutralization of IFN-α/ß receptor 1 blocked PD-L1 induction in Mkp-1-/- mice following E. coli infection. PD-L1 was potently induced in macrophages by E. coli and lipopolysaccharide in vitro, and Mkp-1 deficiency exacerbated PD-L1 induction with little effect on the half-life of PD-L1 mRNA. In contrast, inhibitors of Janus kinase 1/2 and tyrosine kinase 2, as well as the IFN-α/ß receptor 1-neutralizing mAb, markedly attenuated PD-L1 induction. These results suggest that the beneficial effect of type I IFNs in E. coli-infected Mkp-1-/- mice is, at least in part, mediated by Janus kinase/signal transducer and activator of transcription-driven PD-L1 induction. Our studies also support the notion that enhanced PD-L1 expression contributes to the bactericidal defect of Mkp-1-/- mice.


Assuntos
Antígeno B7-H1 , Fosfatase 1 de Especificidade Dupla , Infecções por Escherichia coli , Regulação da Expressão Gênica , Interferon Tipo I , Animais , Antígeno B7-H1/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Escherichia coli/genética , Escherichia coli/imunologia , Infecções por Escherichia coli/imunologia , Regulação da Expressão Gênica/imunologia , Interferon Tipo I/genética , Camundongos
15.
Clin Immunol ; 236: 108939, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35121106

RESUMO

Galectin-3, an attractive molecule of innate immunity, has been reported to be involved in the neuroinflammatory diseases. However, the role of Galectin-3 in autoimmune uveitis is still unclear. The purpose of this study was to investigate the effect and mechanism of Galectin-3 on microglial activation and inflammation of experimental autoimmune uveitis (EAU). We immunized female C57BL/6 J mice with IRBP651-670 to induce EAU and the specific inhibitor was intravitreally injected in EAU mice. Disease severity was evaluated by clinical and histopathological scores. Immunofluorescence, western blot, qRT-PCR analysis and immunoprecipitation were used to detect the functional phenotypes and mechanisms on microglia after Galectin-3 inhibition. Our results showed that the expression of Galectin-3 was conspicuously increased in microglia of EAU retinas. The specific inhibitor of Galectin-3, TD139 was found to ameliorate the clinical and histological manifestations of EAU mice. In addition, TD139 reduced the expression of proinflammatory factors in vivo and vitro, which are related to the severity of uveitis. In mechanism, TD139 down-regulated the expression of TLR4 and MyD88, and then inhibited the activation of NF-κB p65 in microglia. In conclusion, Galectin-3 may play important roles in a variety of immune related diseases including autoimmune uveitis. Additionally, the inhibition of Galectin-3 may attenuate the microglial activation and inflammatory response through TLR4/MyD88/NF-κB pathway, highlighting a potential therapeutic target of Galectin-3 for autoimmune uveitis.


Assuntos
Doenças Autoimunes , Uveíte , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/farmacologia , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Uveíte/tratamento farmacológico
16.
Am J Physiol Regul Integr Comp Physiol ; 322(2): R126-R135, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34984926

RESUMO

Many lung diseases are caused by an excessive inflammatory response, and inflammatory lung diseases are often modeled using lipopolysaccharide (LPS) in mice. Cyclooxygenase-2 (COX-2) encoded by the Ptgs2 gene is induced in response to inflammatory stimuli including LPS. The objective of this study was to test the hypothesis that mice deficient in COX-2 (Ptgs2-/-) will be protected from LPS-induced lung injury. Wild-type (WT; CD1 mice) and Ptgs2-/- mice (on a CD1 background) were treated with LPS or vehicle for 24 h. LPS treatment resulted in histological evidence of lung injury, which was attenuated in the Ptgs2-/- mice. LPS treatment increased the mRNA levels for tumor necrosis factor-α, interleukin-10, and monocyte chemoattractant protein-1 in the lungs of WT mice, and the LPS-induced increases in these levels were attenuated in the Ptgs2-/- mice. The protein levels of active caspase-3 and caspase-9 were lower in the LPS-treated lungs of Ptgs2-/- mice than in LPS-treated WT mice, as were the number of terminal deoxynucleotide transferase dUTP nick end labeling-positive cells in lung sections. LPS exposure resulted in a greater lung wet-to-dry weight ratio (W/D) in WT mice, suggestive of pulmonary edema, while in LPS-treated Ptgs2-/- mice, the W/D was not different from controls and less than in LPS-treated WT mice. These results demonstrate that COX-2 is involved in the inflammatory response to LPS and suggest that COX-2 not only acts as a downstream participant in the inflammatory response, but also acts as a regulator of the inflammatory response likely through a feed-forward mechanism following LPS stimulation.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Apoptose , Ciclo-Oxigenase 2/deficiência , Pulmão/enzimologia , Pneumonia/prevenção & controle , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/patologia , Animais , Caspase 3/metabolismo , Caspase 9/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Ciclo-Oxigenase 2/genética , Modelos Animais de Doenças , Feminino , Interleucina-10/genética , Interleucina-10/metabolismo , Lipopolissacarídeos , Pulmão/patologia , Masculino , Camundongos Knockout , Pneumonia/induzido quimicamente , Pneumonia/enzimologia , Pneumonia/patologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
17.
Endocr Connect ; 10(11): 1420-1427, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34636743

RESUMO

BACKGROUND: Triglyceride glycemic (TyG) index is a novel tool for assessing insulin resistance (IR). Recently, TyG index as a potential biomarker for gestational diabetes mellitus (GDM) has been studied, but its performance is yet inconclusive. Thus, we performed this systemic review and meta-analysis to evaluate the performance of TyG index in predicting GDM. METHODS: Studies published before March 1, 2021, with comparison of TyG index between GDM patients and healthy controls were retrieved from multiple databases (PubMed, Web of Science, The Cochrane Library, and Embase). The mean difference (MD) of TyG index in GDM patients and healthy controls was pooled using random-effect models. RESULTS: Differentiation of TyG index between patients with GDM and controls showed significant results. Overall, there is a four-fold increase in TyG index in GDM patients compared with controls (MD: 0.22, 95% CI: 0.07-0.36, P = 0.003; I2 = 71%, P = 0.009). In subgroup analyses according to gestational time, TyG index in the second trimester predicted GDM with low heterogeneity (MD: 0.26, 95% CI: 0.15-0.37, P < 0.001; I2 = 0%, P = 0.54), while no such correlation was found in the first trimester. CONCLUSION: TyG index, especially in the second trimester, could be a promising biomarker for predicting GDM.

18.
Life Sci Alliance ; 4(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34580177

RESUMO

Ubiquitination and phosphorylation are reversible posttranslational protein modifications regulating physiological and pathological processes. MAPK phosphatase (MKP)-1 regulates innate and adaptive immunity. The multifaceted roles of MKP-1 were attributed to dephosphorylation of p38 and JNK MAPKs. We show that the lack of MKP-1 modulates the landscape of ubiquitin ligases and deubiquitinase enzymes (DUBs). MKP-1-/- showed an aberrant regulation of several DUBs and increased expression of proteins and genes involved in IL-1/TLR signaling upstream of MAPK, including IL-1R1, IRAK1, TRAF6, phosphorylated TAK1, and an increased K63 polyubiquitination on TRAF6. Increased K63 polyubiquitination on TRAF6 was associated with an enhanced phosphorylated form of A20. Among abundant DUBs, ubiquitin-specific protease-13 (USP13), which cleaves polyubiquitin-chains on client proteins, was substantially enhanced in murine MKP-1-deficient BMDMs. An inhibitor of USP13 decreased the K63 polyubiquitination on TRAF6, TAK1 phosphorylation, IL-1ß, and TNF-α induction in response to LPS in BMDMs. Our data show for the first time that MKP-1 modulates the ligase activity of TRAF6 through modulation of specific DUBs.


Assuntos
Fosfatase 1 de Especificidade Dupla/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Macrófagos/metabolismo , Receptores Toll-Like/metabolismo , Ubiquitinação/genética , Aminopiridinas/farmacologia , Animais , Células Cultivadas , Fosfatase 1 de Especificidade Dupla/genética , Técnicas de Inativação de Genes/métodos , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Tiocianatos/farmacologia , Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos
19.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L392-L403, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34105991

RESUMO

Endothelial cell apoptosis is an early event in the development of acute lung injury (ALI). We have previously found that the Src family tyrosine kinase (STK) Yes activates caspase-3, whereas the STK Fyn inhibits caspase-3 activation in cultured pulmonary endothelial cells. We hypothesized that deficiency in Yes or Fyn in mice would have differential effects on lipopolysaccharide (LPS)-induced ALI. Mice were treated with LPS (10 mg/kg ip) for 24 h. Histological evidence of lung injury was greater in LPS-treated wild-type mice than in vehicle-treated wild-type mice, and the LPS-induced histological evidence of lung injury was attenuated in yes-/- mice and enhanced in fyn-/- mice. In wild-type or fyn-/- mice, LPS resulted in greater lung wet-to-dry weight ratios than in controls, whereas in yes-/- mice lung, wet-to-dry weight was similar between LPS and controls. LPS-exposed fyn-/- mice had greater respiratory system resistance and lower respiratory system compliance than did LPS-exposed wild-type mice. TUNEL positive cells in the lung following LPS treatment were greater in the fyn-/- mice and lower in the yes-/- mice compared with that in the wild-type mice. Following LPS treatment lung protein levels of PECAM-1 were lower in fyn-/- mice than in controls or yes-/- mice. LPS treatment increased cleaved caspase-3 protein levels in wild-type mice, whereas LPS-induced caspase-3 activation was attenuated in yes-/- mice and enhanced in fyn-/- mice. These results indicate that LPS-induced ALI is positively mediated via Yes-related mechanisms and negatively mediated by Fyn-related mechanisms.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos/toxicidade , Proteínas Proto-Oncogênicas c-fyn , Proteínas Proto-Oncogênicas c-yes , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Animais , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas Proto-Oncogênicas c-yes/genética , Proteínas Proto-Oncogênicas c-yes/metabolismo
20.
J Immunol ; 206(12): 2966-2979, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34039638

RESUMO

We have previously shown that Mkp-1-deficient mice produce elevated TNF-α, IL-6, and IL-10 following systemic Escherichia coli infection, and they exhibited increased mortality, elevated bacterial burden, and profound metabolic alterations. To understand the function of Mkp-1 during bacterial infection, we performed RNA-sequencing analysis to compare the global gene expression between E. coli-infected wild-type and Mkp-1 -/- mice. A large number of IFN-stimulated genes were more robustly expressed in E. coli-infected Mkp-1 -/- mice than in wild-type mice. Multiplex analysis of the serum cytokine levels revealed profound increases in IFN-ß, IFN-γ, TNF-α, IL-1α and ß, IL-6, IL-10, IL-17A, IL-27, and GMSF levels in E. coli-infected Mkp-1 -/- mice relative to wild-type mice. Administration of a neutralizing Ab against the receptor for type I IFN to Mkp-1 -/- mice prior to E. coli infection augmented mortality and disease severity. Mkp-1 -/- bone marrow-derived macrophages (BMDM) produced higher levels of IFN-ß mRNA and protein than did wild-type BMDM upon treatment with LPS, E. coli, polyinosinic:polycytidylic acid, and herring sperm DNA. Augmented IFN-ß induction in Mkp-1 -/- BMDM was blocked by a p38 inhibitor but not by an JNK inhibitor. Enhanced Mkp-1 expression abolished IFN-ß induction by both LPS and E. coli but had little effect on the IFN-ß promoter activity in LPS-stimulated RAW264.7 cells. Mkp-1 deficiency did not have an overt effect on IRF3/7 phosphorylation or IKK activation but modestly enhanced IFN-ß mRNA stability in LPS-stimulated BMDM. Our results suggest that Mkp-1 regulates IFN-ß production primarily through a p38-mediated mechanism and that IFN-ß plays a beneficial role in E. coli-induced sepsis.


Assuntos
Fosfatase 1 de Especificidade Dupla/metabolismo , Infecções por Escherichia coli/metabolismo , Interferon beta/metabolismo , Animais , Células Cultivadas , Fosfatase 1 de Especificidade Dupla/deficiência , Fosfatase 1 de Especificidade Dupla/imunologia , Infecções por Escherichia coli/imunologia , Interferon beta/genética , Interferon beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células RAW 264.7 , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...