Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 259: 115693, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37531745

RESUMO

Epothilone B (Epo B) is a potent antitumor natural product with sub-nanomolar anti-proliferation action against several human cancer cells. However, poor selectivity to tumor cells and unacceptable therapeutic windows of Epo B and its analogs are the major obstacles to their development into clinical drugs. Herein, we present self-assembled nanomicelles based on an amphiphilic carbohydrate-Epo B conjugate that is inactive until converted to active Epo B within the tumor. Four Epo B-Rhamnose conjugates linked via two linkers containing a disulfide bond that is sensitive to GSH were synthesized. Conjugate 34 can self-assemble into nanomicelles with a high concentration of Rha on the surface, allowing for better tumor targeting. After internalization by cancer cells, the disulfide bond can be cleaved in the presence of high levels of GSH to release active Epo B, thereby exhibiting significant anticancer efficiency and selectivity in vitro and in vivo.


Assuntos
Epotilonas , Nanopartículas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Carboidratos/uso terapêutico , Dissulfetos , Linhagem Celular Tumoral , Nanopartículas/química
2.
Bioorg Chem ; 138: 106663, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37329814

RESUMO

Glycogen synthase kinase 3ß (GSK-3ß) is a potential target for anti-Alzheimer's disease (AD) drug development. In this study, a series of novel thieno[3,2-c]pyrazol-3-amine derivatives was synthesized and evaluated as potential GSK-3ß inhibitors by structure-based drug design. The thieno[3,2-c]pyrazol-3-amine derivative 54 with a 4-methylpyrazole moiety which interacted with Arg141 by π-cation interaction was identified as a potent GSK-3ß inhibitor with an IC50 of 3.4 nM and an acceptable kinase selectivity profile. In the rat primary cortical neurons, compound 54 showed neuroprotective effects on Aß-induced neurotoxicity. Western blot analysis indicated that 54 inhibited GSK-3ß by up-regulating the expression of phosphorylated GSK-3ß at Ser9 and down-regulating the expression of phosphorylated GSK-3ß at Tyr216. Meanwhile, 54 decreased tau phosphorylation at Ser396 in a dose-dependent way. In astrocytes and microglia cells, 54 inhibited the expression of inducible nitric oxide synthase (iNOS), indicating that 54 showed an anti-neuroinflammatory effect. In the AlCl3-induced zebrafish AD model, 54 significantly ameliorated the AlCl3-induced dyskinesia, demonstrating its anti-AD activity in vivo.


Assuntos
Doença de Alzheimer , Proteínas tau , Ratos , Animais , Proteínas tau/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Peixe-Zebra/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Fosforilação
3.
Bioorg Chem ; 135: 106527, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37031504

RESUMO

ß-D-N4-hydroxycytidine (NHC, EIDD-1931) is a nucleoside analogue that exhibits broad spectrum antiviral activity against a variety of RNA viruses. Herein, we report the synthesis of a series of lipid prodrugs of NHC and a novel 3'-fluoro modified NHC analogue, and evaluation of their antiviral activity against five variants of SARS-CoV-2. All lipid prodrugs showed potent antiviral activity against the tested SARS-CoV-2 variants with EC50 values in the range of 0.31-3.51 µM, which were comparable to those of NHC or higher than those of remdesivir and molnupiravir. An increase in the cytostatic activity of the lipid prodrugs was found, but prodrug 2d proved equally selective as molnupinavir. The 3'-F analogue of NHC (6) only displayed minor antiviral activity against the SARS-CoV-2 Omicron variant (EC50 = 29.91 µM), while no activity was found for other variants at the highest concentration tested. The promising antiviral data of the lipid prodrugs of NHC suggest that they deserve further investigation as new anti-SARS-CoV-2 drugs.


Assuntos
COVID-19 , Pró-Fármacos , Humanos , SARS-CoV-2 , Pró-Fármacos/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Lipídeos
4.
J Enzyme Inhib Med Chem ; 37(1): 1724-1736, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35698879

RESUMO

Glycogen synthase kinase 3ß (GSK-3ß) catalyses the hyperphosphorylation of tau protein in the Alzheimer's disease (AD) pathology. A series of novel thieno[3,2-c]pyrazol-3-amine derivatives were designed and synthesised and evaluated as potential GSK-3ß inhibitors by structure-guided drug rational design approach. The thieno[3,2-c]pyrazol-3-amine derivative 16b was identified as a potent GSK-3ß inhibitor with an IC50 of 3.1 nM in vitro and showed accepted kinase selectivity. In cell levels, 16b showed no toxicity on the viability of SH-SY5Y cells at the concentration up to 50 µM and targeted GSK-3ß with the increased phosphorylated GSK-3ß at Ser9. Western blot analysis indicated that 16b decreased the phosphorylated tau at Ser396 in a dose-dependent way. Moreover, 16b effectively increased expressions of ß-catenin as well as the GAP43, N-myc, and MAP-2, and promoted the differentiated neuronal neurite outgrowth. Therefore, the thieno[3,2-c]pyrazol-3-amine derivative 16b could serve as a promising GSK-3ß inhibitor for the treatment of AD.


Assuntos
Doença de Alzheimer , Aminas , Glicogênio Sintase Quinase 3 beta , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Aminas/síntese química , Aminas/farmacologia , Inibidores Enzimáticos/farmacologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Fosforilação , Proteínas tau/metabolismo
5.
ChemMedChem ; 17(6): e202100731, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35146935

RESUMO

The epigenetic reader BRD4 is involved in chromatin remodelling and transcriptional regulation, making it a promising therapeutic target. However, over the past decades, many BRD4 inhibitors that entered clinical trials were, in the main, unsatisfactory, due to some therapeutic limitations such as off-target effects and drug resistance. Combining a BRD4 inhibitor with another drug was expected to be an ideal option to overcome these hurdles and to improve therapeutic outcomes. However, such combination therapy could trigger toxicity caused by drug-drug interactions, complex pharmacokinetics, and additive effects. Recently, the application of dual-target drugs targeting BRD4 and other kinases has become an attractive approach to remedy the defects of a single BRD4 inhibitor. This review focuses on recent advances in the discovery of dual BRD4-kinase inhibitors, with an emphasis on their co-crystal structures and structure-activity relationships (SARs), as well as future perspectives in this field.


Assuntos
Antineoplásicos , Proteínas de Ciclo Celular , Neoplasias , Fatores de Transcrição , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Humanos , Neoplasias/tratamento farmacológico , Proteínas Nucleares , Polifarmacologia , Fatores de Transcrição/antagonistas & inibidores
6.
Eur J Med Chem ; 228: 114037, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34883290

RESUMO

Off-target toxicity is one of the main challenges faced by anticancer chemotherapeutics. For tumor targeted and precision chemotherapy, we take the advantages of the ligand directed tumor active targeting of small molecule drug conjugates (SMDCs) and the passive tumor targeting of nanoparticles via the enhanced penetration and retention (EPR) effects, put forward a branched small molecule drug conjugate (BSMDC) nanomedicine design concept. In a proof of concept, we used pentaerythritol as the branched moiety, galactosamine (GalN) as the hepatocellular carcinoma (HCC) directing ligands, PTX as a payload, and a stearoyl moiety as the amphiphilic property adjusting group, designed and synthesized BSMDC 1 and prepared its NPs. In cellular level, the BSMDC 1 NPs targeted asialoglycoprotein receptor (ASGPR)-overexpressing HepG2 cells, were effectively taken up in the cells and released in tumor microenvironments, inhibited the HepG2 cell proliferation, arrested HepG2 cell in G2/M phase and induced tumor cell apoptosis. In HepG2 xenograft nude mice, the BSMDC 1 NPs were high specific to target the tumor and demonstrated a higher antitumor efficiency than BSMDC 1, having no apparent influences on mice body weights and major organs, supporting our BSMDC nanomedicine design concept. Therefore, this new strategy may find applications for cancer targeted and precision chemotherapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Galactosamina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Paclitaxel/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Galactosamina/química , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Nus , Estrutura Molecular , Nanomedicina , Paclitaxel/química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
7.
Bioorg Med Chem Lett ; 55: 128474, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838651

RESUMO

BU-4664L is a naturally occurring N-farnesylated dibenzodiazepinone with important biological activities. Herein, we report the synthesis and antitumor evaluation of two series of BU-4664L derivatives bearing different substituent patterns on the dibenzodiazepinone core and with diverse side chains. All of the derivatives displayed micromolar activity against the human prostate cancer PC-3 cells, while lower or no activity against the human lung H460 cells. The most active derivatives were 10a and 16c which exerted antiproliferative activity against PC-3 cells with GI50 values of 5.66 and 5.94 µM, respectively, and thus represent promising lead compounds for further development.


Assuntos
Antineoplásicos/farmacologia , Dibenzazepinas/farmacologia , Sesquiterpenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dibenzazepinas/síntese química , Dibenzazepinas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Sesquiterpenos/síntese química , Sesquiterpenos/química , Relação Estrutura-Atividade
8.
Eur J Med Chem ; 225: 113821, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34517222

RESUMO

Histone deacetylase 6 (HDAC6) is a potential target for Alzheimer's disease (AD). In this study, a series of novel phenothiazine-, memantine-, and 1,2,3,4-tetrahydro-γ-carboline-based HDAC6 inhibitors with a variety of linker moieties were designed and synthesized. As a hydrochloride salt, the phenothiazine-based hydroxamic acid W5 with a pyridyl-containing linker motif was identified as a high potent and selective HDAC6 inhibitor. It inhibited HDAC6 with an IC50 of 2.54 nM and was more than 290- to 3300-fold selective over other HDAC isoforms. In SH-SY5Y cells, W5 dose-dependently increased the acetylated α-tubulin levels and reduced the hyperphosphorylated tau proteins at Ser396. As an effective metal chelator, W5 inhibited Cu2+-induced Aß1-42 aggregation and disaggregated Cu2+-Aß1-42 oligomers, and showed protective effects on the SH-SY5Y cells against Aß1-42- as well as Cu2+-Aß1-42 induced cell damages, serving as a potential ligand to target AD metal dyshomeostasis. Moreover, W5 promoted the differentiated neuronal neurite outgrowth, increased the mRNA expression of the recognized neurogenesis markers, GAP43, N-myc, and MAP-2. Therefore, W5 might be a good lead for the development of novel HDAC6 inhibitors targeting multi-facets of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cobre/metabolismo , Relação Dose-Resposta a Droga , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
9.
Bioorg Chem ; 113: 104995, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34034133

RESUMO

A series of novel 3-(1-benzotriazole)-nor-ß-lapachones 5a-5l were synthesized as the NQO1-targeted anticancer agents. Most of these compounds displayed good antiproliferative activity against the breast cancer MCF-7, lung cancer A549 and hepatocellular carcinoma HepG2 cells in agreements with their NQO1 activity. Among them, compound 5k was identified as a favorable NQO1 substrate. It could activate the ROS production in a NQO1-dependent manner, arrest tumor cell cycle at G0/G1 phase, promote tumor cell apoptosis, and decrease the mitochondrial membrane potential. In HepG2 xenograft models, 5k significantly suppressed the tumor growth with no influences on animal body weights. Therefore, 5k could be a good lead for further anticancer drug developments.


Assuntos
Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , Naftoquinonas/farmacologia , Triazóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzofuranos/síntese química , Benzofuranos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , NAD(P)H Desidrogenase (Quinona)/metabolismo , Naftoquinonas/síntese química , Naftoquinonas/química , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Células Tumorais Cultivadas
10.
Curr Med Chem ; 28(8): 1585-1604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32660395

RESUMO

BACKGROUND: The casein kinase 1 (CK1) family is involved in regulating many cellular processes, including membrane trafficking, DNA damage repair, cytoskeleton dynamics, cytoskeleton maintenance and apoptosis. CK1 isoforms, especially CK1δ and CK1ε have emerged as important therapeutic targets for severe disorders such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), familial advanced sleep phase syndrome and cancer. Due to the importance of CK1 for the pathogenesis of disorders, there are great interests in the development of CK1 inhibitors. METHODS: Using SciFinder® as a tool, the publications about the biology of CK1 and the recent developments of CK1 inhibitors were surveyed with an exclusion of those published as patents. RESULTS: This review presents the current state of knowledge on the development of CK1 inhibitors, including both synthetic small molecular inhibitors that were divided into 7 categories according to structural features, and the natural compounds. An overview of the advancement of CK1 inhibitors was given, with the introduction of various existing CK1 inhibitors, their inhibitory activities, and the structure-activity relationships. CONCLUSION: Through physicochemical characterization and biological investigations, it is possible to understand the structure-activity relationship of CK1 inhibitors, which will contribute to better design and discovery of potent and selective CK1 inhibitors as potential agents for severe disorders such as AD, ALS and cancer.


Assuntos
Caseína Quinase I , Neoplasias , Apoptose , Caseína Quinase I/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Isoformas de Proteínas , Relação Estrutura-Atividade
11.
Future Med Chem ; 13(1): 45-62, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33242992

RESUMO

RET is a proto-oncogene encoding a receptor tyrosine kinase. RET regulates key aspects of cellular proliferation, differentiation and survival. The activation of RET via gene fusions or point mutations is closely related to lung, thyroid and other cancers. This review summarizes the developments of a diversity of small molecule RET protein kinase inhibitors in the past 10 years. These RET inhibitors are classified according to their hinge binder chemotypes as: pyrimidines, including the pyrazolopyrimidines, pyrimidine oxazines, quinazolines, 4-aminopyrimidines and 4-aminopyridines; indolinones; 5-aminopyrazole-4-carboxamides; 3-trifluoromethylanilines; imidazopyridines, imidazopyridazines and pyrazopyridines; nicotinonitriles; pyridones and 1,2,4-triazoles. In each section, the biological activities of the inhibitors, their structure-activity relationships and possible binding modes with the RET kinase are introduced.


Assuntos
Antineoplásicos/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Pirimidinas/química , Receptores Proteína Tirosina Quinases/química , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Descoberta de Drogas , Hemoglobina A/metabolismo , Humanos , Imidazóis/química , Imidazóis/farmacologia , Oxazinas/química , Oxazinas/farmacologia , Oxindóis/química , Oxindóis/farmacologia , Proto-Oncogene Mas , Pirazóis/química , Pirazóis/farmacologia , Piridinas/química , Piridinas/farmacologia , Pirimidinas/farmacologia , Quinazolinas/química , Quinazolinas/farmacologia , Receptores Proteína Tirosina Quinases/farmacologia
12.
J Med Chem ; 63(23): 14840-14866, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33201714

RESUMO

Taking the previously discovered 1-methyl-1,4-dihydroindeno[1,2c]pyrazol derivative LL01 as a lead, systematic structural modifications were made at the phenolic 6- and 7-positions and the aniline at the 3-position of the indenopyrazole core to investigate the SARs and to improve water solubility. Among the designed indenopyrazoles ID01-ID33, a series of potent MTAs were identified. As the hydrochloride salt(s), ID09 and ID33 showed excellent aqueous solubility and favorable Log P value and displayed noteworthily low nanomolar potency against a variety of tumor cells, including those taxol-resistant ones. They inhibited tubulin polymerization, disrupted cellular microtubule networks by targeting the colchicine site, and promoted HepG2 cell cycle arrest and cell apoptosis. In the HepG2 xenograft mouse model, ID09 and ID33 effectively inhibited tumor growth at an oral dose of 25 mg/kg. At an intravenous (iv) injection dose of 10 mg/kg every other day, ID09 suppressed tumor growth by 68% without obvious toxicity.


Assuntos
Antineoplásicos/uso terapêutico , Indenos/uso terapêutico , Neoplasias/tratamento farmacológico , Pirazóis/uso terapêutico , Moduladores de Tubulina/uso terapêutico , Animais , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Indenos/síntese química , Camundongos Endogâmicos BALB C , Estrutura Molecular , Pirazóis/síntese química , Solubilidade , Relação Estrutura-Atividade , Moduladores de Tubulina/síntese química , Água/química , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Bioorg Chem ; 101: 104005, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32599362

RESUMO

The clinical application of mitoxantrone (MTZ), a DNA-intercalating topoisomerase II (topo II) poison, has been largely limited by the risk of secondary tumor and severe myelosuppression. To develop more effective antineoplastic agents with less toxicity, a spectrum of anthraquinone analogues of MTZ were herein designed and synthesized based on the concept of 'enhancing protein backbone-binding', by rationally introducing hydrophobic long fatty acid chain (LFC) and hydrophilic polyamine (PA) components, which are reported to function as effective tumor-targeting tethers. The SAR exploration implicated that in our synthesized molecules, the introduction of both lipophilic LFC and hydrophilic PA fragment is plausibly beneficial to the anti-proliferative potency, with a certain degree of selectivity between the hematopoietic and solid malignant cells, which still need to be further accurately confirmed. Meanwhile, many compounds, the LFC-tethered 5d2 and PA-bridged 8c in particular, provided satisfactory topo IIα inhibition by acting as DNA non-intercalators, largely attributable to their strong adaptability to three binding regions (pocket I, II and III) and also the generated H-bonding interactions between inhibitors and key residues of topo IIα. In brief, 5d2 and 8c might be promising hits for further exploitation of more potent topo IIα inhibitors.


Assuntos
Antraquinonas/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Mitoxantrona/análogos & derivados , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Mitoxantrona/química , Mitoxantrona/farmacologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/química
14.
Eur J Med Chem ; 198: 112396, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32464425

RESUMO

A novel series of 4-substituted-3,4-dihydrobenzo[h]quinoline-2,5,6(1H)-triones as NQO1-directed antitumor agents were designed, synthesized, biologically evaluated. Compounds 3n, 3o and 3j proved to be good NQO1 substrates that showed increased metabolic rates relative to that of ß-lapachone. In addition, 3n, 3o and 3j potently inhibited the growth of NQO1-rich breast cancer MCF-7 cell, liver hepatocellular HepG2 cell, and lung cancer A549 cell. In cellular mechanistic studies, the representative compound 3o triggered ROS generation depending on the NQO1 dose, and induce HepG2 cell apoptosis by the generated oxidative stress. In HepG2 xenografts mouse model, at the dose of 20 mg/kg, 3o remarkably suppressed the tumor growth without affecting the animal weights.


Assuntos
Antineoplásicos/síntese química , NAD(P)H Desidrogenase (Quinona)/metabolismo , Quinolinas/síntese química , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Xenoenxertos , Humanos , Camundongos , Modelos Moleculares , Terapia de Alvo Molecular , Naftoquinonas/farmacologia , Neoplasias Experimentais , Estresse Oxidativo , Quinolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
15.
Cells ; 9(3)2020 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-32155989

RESUMO

Due to the complicated pathogenesis of Alzheimer's disease (AD), the development of multitargeted agents to simultaneously interfere with multiple pathological processes of AD is a potential choice. Glycogen synthase kinase-3ß (GSK-3ß) plays a vital role in the AD pathological process. In this study, we discovered a novel 1H-pyrrolo[2,3-b]pyridine derivative B10 as a GSK-3ß inhibitor that features with a quinolin-8-ol moiety to target the metal dyshomeostasis of AD. B10 potently inhibited GSK-3ß with an IC50 of 66 ± 2.5 nM. At the concentration of 20 µM, B10 increased ß-catenin abundance (ß-catenin/GAPDH: 0.83 ± 0.086 vs. 0.30 ± 0.016), phosphorylated GSK-3ß at Ser9 (p-GSK-3ß/GAPDH: 0.53 ± 0.045 vs. 0.35 ± 0.012), and decreased the phosphorylated tau level (p-tau/GAPDH: 0.33 ± 0.065 vs. 0.83 ± 0.061) in SH-SY5Y cells. Unlike other GSK-3ß inhibitors, B10 had a direct effect on Aß by inhibiting Aß1-42 aggregation and promoting the Aß1-42 aggregate disassociation. It selectively chelated with Cu2+, Zn2+, Fe3+, and Al3+, and targeted AD metal dyshomeostasis. Moreover, B10 effectively increased the mRNA expression of the recognized neurogenesis markers, GAP43, N-myc, and MAP-2, and promoted the differentiated neuronal neurite outgrowth, possibly through the GSK-3ß and ß-catenin signal pathways. Therefore, B10 is a potent and unique GSK-3ß inhibitor that has a direct on Aß and serves as a multifunctional anti-AD agent for further investigations.


Assuntos
Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Neuritos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteínas tau/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular Tumoral , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Neuritos/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
16.
Curr Med Chem ; 27(27): 4567-4576, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32175831

RESUMO

BACKGROUND: Microtubule Targeting Agents (MTAs) represent the most successful anticancer drugs for cancer chemotherapy. Through interfering with the tubulin polymerization and depolymerization dynamics, MTAs influence intracellular transport and cell signal pathways, inhibit cell mitosis and cell proliferation, and induce cell apoptosis and death. The tubulin maytansine site binding agents are natural or nature-derived products that represent one type of the MTAs that inhibit tubulin polymerization and exhibit potent antitumor activity both in vitro and in vivo. They are used as Antibody-Drug Conjugates (ADCs) in cancer chemotherapy. METHODS: Using SciFinder® as a tool, the publications about maytansine, its derivatives, maytansine binding site, maytansine site binding agents and their applications as MTAs for cancer therapy were surveyed with an exclusion on those published as patents. The latest progresses in clinical trials were obtained from the clinical trial web. RESULTS: This article presents an introduction about MTAs, maytansine, maytansine binding site and its ligands, the applications of these ligands as MTAs and ADCs in cancer therapy. CONCLUSION: The maytansine site binding agents are powerful MTAs for cancer chemotherapy. The maytansine site ligands-based ADCs are used in clinic or under clinical trials as cancer targeted therapy to improve their selectivity and to reduce their side effects. Further improvements in the delivery efficiency of the ADCs will benefit the patients in cancer targeted therapy.


Assuntos
Neoplasias , Antineoplásicos , Humanos , Imunoconjugados , Ligantes , Maitansina , Microtúbulos , Trastuzumab , Tubulina (Proteína)
17.
Invest New Drugs ; 38(1): 29-38, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30887253

RESUMO

Through rational drug design, we previously identified an indenoprazole derivative, 2-(6-ethoxy-3-(3-ethoxyphenylamino)-1-methyl-1,4-dihydroindeno[1,2-c]pyrazol-7-yloxy)acetamide (LL01), as a potent tubulin polymerization inhibitor targeting the tubulin colchicine binding site. In this study, we further demonstrated that LL01 was not a P-gp substrate. It potently inhibited the growth of a variety of tumor cells, including those with multidrug resistance, with GI50 values in the low nanomole ranges. In vitro liver microsome stability assay, LL01 was modest stable in the liver microsomes of human, mouse and rat, but was fast metabolized in dog. After single oral administration of LL01 at a dose of 10 mg/kg in SD male rats, LL01 showed acceptable PK properties with a mean bioavailability of 41%. In human HepG2 hepatoma xenograft, at the oral doses of 25 mg/kg/day and 12.5 mg/kg/day, LL01 inhibited the tumor growth by 61.27%, and 43.74%, respectively, which is much better than the positive drug sorafenib (29.45%; 30 mg/kg/day). Therefore, LL01 might be a potential drug candidate for further investigation for hepatocellular carcinoma therapy.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Colchicina/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Animais , Antineoplásicos/química , Apoptose , Sítios de Ligação , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células , Resistência a Múltiplos Medicamentos , Feminino , Humanos , Técnicas In Vitro , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ratos , Ratos Sprague-Dawley , Moduladores de Tubulina/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Eur J Med Chem ; 187: 111968, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31865012

RESUMO

Tubulin inhibitors that bind to the colchicine site are widely studied anticancer agents. In continuous our researches, we designed a series of novel indazole derivatives as microtubule-targeting agents (MTAs). The structure-activity relationships (SARs) investigations indicated that a 3,4,5-trimethoxyphenyl moiety and a methyl or methoxy substitution were preferred for the better antiproliferative activity. The indazole derivatives 3c and 3f showed noteworthy low nanomolar potency against HepG2, HCT116, SW620, HT29 and A549 tumor cells. In mechanism studies, 3c and 3f were proved to target the colchicine site, inhibited tubulin polymerization and disrupted cellular microtubule networks, arrested HCT116 cell in G2/M phase and induced cell apoptosis. In the HCT116 xenografts mouse model, 3c and 3f suppressed tumor growth by 45.3% and 58.9% at an orally dose of 25 mg/kg without causing obvious weight loss. The indazole 3f may serve as a good lead or drug candidate for colorectal cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Colchicina/farmacologia , Descoberta de Drogas , Indazóis/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colchicina/síntese química , Colchicina/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indazóis/síntese química , Indazóis/química , Camundongos , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Polimerização/efeitos dos fármacos , Relação Estrutura-Atividade , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química
19.
Molecules ; 24(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775363

RESUMO

In previous work, we applied the rotation-limiting strategy and introduced a substituent at the 3-position of the pyrazolo [3,4-d]pyrimidin-4-amine as the affinity element to interact with the deeper hydrophobic pocket, discovered a series of novel quinazolinones as potent PI3Kδ inhibitors. Among them, the indole derivative 3 is one of the most selective PI3Kδ inhibitors and the 3,4-dimethoxyphenyl derivative 4 is a potent and selective dual PI3Kδ/γ inhibitor. In this study, we replaced the carbonyl group in the quinazolinone core with a sulfonyl group, designed a series of novel 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide derivatives as PI3Kδ inhibitors. After the reduction of nitro group in N-(2,6-dimethylphenyl)-2-nitrobenzenesulfonamide 5 and N-(2,6-dimethylphenyl)-2-nitro-5-fluorobenzenesulfonamide 6, the resulting 2-aminobenzenesulfonamides were reacted with trimethyl orthoacetate to give the 3-methyl-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide derivatives. After bromination of the 3-methyl group, the nucleophilic substitution with the 3-iodo-1H-pyrazolo[3,4-d]pyrimidin-4-amine provided the respective iodide derivatives, which were further reacted with a series of arylboronic acids via Suzuki coupling to furnish the 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide derivatives 15a-J and 16a-d. In agreement with the quinazolinone derivatives, the introduction of a 5-indolyl or 3,4-dimethoxyphenyl at the affinity pocket generated the most potent analogues 15a and 15b with the IC50 values of 217 to 266 nM, respectively. In comparison with the quinazolinone lead compounds 3 and 4, these 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide derivatives exhibited much decreased PI3Kδ inhibitory potency, but maintained the high selectivity over other PI3K isoforms. Unlike the quinazolinone lead compound 4 that was a dual PI3Kδ/γ inhibitor, the benzthiadiazine 1,1-dioxide 15b with the same 3,4-dimethoxyphenyl moiety was more than 21-fold selective over PI3Kγ. Moreover, the introducing of a fluorine atom at the 7-position of the 2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide core, in general, was not favored for the PI3Kδ inhibitory activity. In agreement with their high PI3Kδ selectivity, 15a and 15b significantly inhibited the SU-DHL-6 cell proliferation.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Quinazolinonas/química , Tiadiazinas/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/química , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Quinazolinonas/síntese química , Quinazolinonas/farmacologia , Relação Estrutura-Atividade , Tiadiazinas/química , Tiadiazinas/farmacologia
20.
Eur J Med Chem ; 167: 211-225, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30772605

RESUMO

To target the multi-facets of Alzheimer's disease (AD), a series of novel GSK-3ß inhibitors containing the 2,3-diaminopyridine moiety were designed and synthesized. The amide derivatives 5a-f showed moderate potency against GSK-3ß with weak Cu2+, Zn2+ and Al3+ chelating ability. The imine derivatives 9a, 9b and 9e were potent GSK-3ß inhibitors and selective Cu2+and Al3+ chelators. The 1,2-diamine derivatives 10a-e were strong metal-chelators, but decreased or lost their GSK-3ß inhibitory potency. In vitro, compounds 9a, 9b and 9e, especially 9b, exhibited good Cu2+-induced Aß aggregation inhibition, Cu2+-Aß complex disaggregation, ROS formation inhibition, and antioxidant activities. In cells, compounds 9a, 9b and 9e can inhibit tau protein phosphorylation and protect neuro cells against Cu2+-Aß1-42 and H2O2-induced cell damage. Furthermore, compound 9b was predicted to have the ability to pass the BBB with drug likeness properties. Therefore, compound 9b might be a good lead for the development of novel GSK-3ß inhibitors targeting multi-facets of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Amidas/química , Aminas/química , Animais , Antioxidantes/farmacologia , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Quelantes , Desenho de Fármacos , Humanos , Células PC12 , Agregação Patológica de Proteínas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ratos , Relação Estrutura-Atividade , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...