Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Biophys ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174865

RESUMO

This study established an LPS-induced RAW264.7 macrophage inflammatory injury model and an AS mouse vulnerable plaque model to observe the effect of JPHYP on macrophage inflammation, plaque formation, blood lipids, inflammation levels, intestinal flora and the influence of TLR4/MyD88/MAPK pathway, and explore the anti-AS effect and molecular mechanism of JPHYP, and detected 16S rRNA of mice intestinal microbes. The difference of intestinal flora in different groups of mice was compared to further explore the intervention effect of JPHYP and clarify the molecular biological mechanism of JPHYP in preventing and treating AS by regulating TLR4/MyD88/MAPK inflammatory signaling pathway and improving intestinal flora.

2.
Sci Adv ; 10(28): eadk2091, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996030

RESUMO

The mechanism by which interferon regulatory factor 8 (IRF8) mutation contributes to lymphomagenesis is unknown. We modeled IRF8 variants in B cell lymphomas and found that they affected the expression of regulators of antigen presentation. Expression of IRF8 mutants in murine B cell lymphomas suppressed CD4, but not CD8, activation elicited by antigen presentation and downmodulated CD74 and human leukocyte antigen (HLA) DM, intracellular regulators of antigen peptide processing/loading in the major histocompatibility complex (MHC) II. Concordantly, mutant IRF8 bound less efficiently to the promoters of these genes. Mice harboring IRF8 mutant lymphomas displayed higher tumor burden and remodeling of the tumor microenvironment, typified by depletion of CD4, CD8, and natural killer cells, increase in regulatory T cells and T follicular helper cells. Deconvolution of bulk RNA sequencing data from IRF8-mutant human diffuse large B cell lymphoma (DLBCL) recapitulated part of the immune remodeling detected in mice. We concluded that IRF8 mutations contribute to DLBCL biology by facilitating immune escape.


Assuntos
Apresentação de Antígeno , Antígenos de Diferenciação de Linfócitos B , Antígenos de Histocompatibilidade Classe II , Fatores Reguladores de Interferon , Mutação , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Animais , Apresentação de Antígeno/imunologia , Apresentação de Antígeno/genética , Humanos , Camundongos , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Diferenciação de Linfócitos B/genética , Antígenos de Diferenciação de Linfócitos B/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/imunologia , Microambiente Tumoral/imunologia , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/patologia , Linhagem Celular Tumoral , Evasão Tumoral/genética , Regulação Neoplásica da Expressão Gênica
3.
World J Surg ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955808

RESUMO

BACKGROUND: The superiority between remimazolam and propofol for anesthesia is controversial in elderly patients (≥60 years). This meta-analysis aimed to systematically compare anesthetic effect and safety profile between remimazolam and propofol in elderly patients under any surgery. METHODS: Cochrane Library, Web of Science, and PubMed were searched until December 25, 2023 for relevant randomized controlled trials. RESULTS: Ten studies with 806 patients receiving remimazolam (experimental group) and 813 patients receiving propofol (control group) were included. Time to loss of consciousness [standard mean difference (SMD) (95% confidence interval (CI): 1.347 (-0.362, 3.055), p = 0.122] and recovery time [SMD (95% CI): -0.022 (-0.300, 0.257), p = 0.879] were similar between experimental and control groups. Mean arterial pressure at baseline minus 1 min after induction [SMD (95% CI): -1.800 (-3.250, -0.349), p = 0.015], heart rate at baseline minus 1 min after induction [SMD (95% CI): -1.041 (-1.537, -0.545), p < 0.001], incidences of hypoxemia [relative risk (RR) (95% CI): 0.247 (0.138, 0.444), p < 0.001], respiratory depression [RR (95% CI): 0.458 (0.300, 0.700), p < 0.001], bradycardia [RR (95% CI): 0.409 (0.176, 0.954), p = 0.043], hypotension [RR (95% CI): 0.415 (0.241, 0.714), p = 0.007], and injection pain [RR (95% CI): 0.172 (0.113, 0.263), p < 0.001] were lower in the experimental group compared to the control group. Postoperative nausea and vomiting was not different between groups [RR (95% CI): 1.194 (0.829, 1.718), p = 0.341]. Moreover, this meta-analysis displayed a low risk of bias, minimal publication bias, and good robustness. CONCLUSION: Remimazolam shows comparative anesthetic effect and better safety profile than propofol in elderly patients under any surgery.

4.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2136-2149, 2024 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-39044580

RESUMO

African swine fever virus (ASFV), as a contagious viral pathogen, is responsible for the occurrence of African swine fever (ASF), a rapidly spreading and highly lethal disease. Since ASFV was introduced into China in 2018, it has been quickly spread to many provinces, which brought great challenges to the pig industry in China. Due to the limited knowledge about the pathogenesis of ASFV, neither vaccines nor antiviral drugs are available. We have found that ASFV infection can induce oxidative stress responses in cells, and DNA repair enzymes play a key role in this process. This study employed RNA interference, RT-qPCR, Western blotting, Hemadsorption (HAD), and flow cytometry to investigate the effects of the inhibitors of DNA repair enzymes OGG1 and MTH1 on ASFV replication and evaluated the anti-ASFV effects of the inhibitors. This study provides reference for the development of anti-viral drugs.


Assuntos
Vírus da Febre Suína Africana , DNA Glicosilases , Monoéster Fosfórico Hidrolases , Replicação Viral , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/efeitos dos fármacos , Animais , Replicação Viral/efeitos dos fármacos , Suínos , DNA Glicosilases/metabolismo , DNA Glicosilases/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Febre Suína Africana/virologia , Antivirais/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Inibidores Enzimáticos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células Vero
5.
Cell Discov ; 10(1): 79, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39075075

RESUMO

Endothelins and their receptors, ETA and ETB, play vital roles in maintaining vascular homeostasis. Therapeutically targeting endothelin receptors, particularly through ETA antagonists, has shown efficacy in treating pulmonary arterial hypertension (PAH) and other cardiovascular- and renal-related diseases. Here we present cryo-electron microscopy structures of ETA in complex with two PAH drugs, macitentan and ambrisentan, along with zibotentan, a selective ETA antagonist, respectively. Notably, a specialized anti-ETA antibody facilitated the structural elucidation. These structures, together with the active-state structures of ET-1-bound ETA and ETB, and the agonist BQ3020-bound ETB, in complex with Gq, unveil the molecular basis of agonist/antagonist binding modes in endothelin receptors. Key residues that confer antagonist selectivity to endothelin receptors were identified along with the activation mechanism of ETA. Furthermore, our results suggest that ECL2 in ETA can serve as an epitope for antibody-mediated receptor antagonism. Collectively, these insights establish a robust theoretical framework for the rational design of small-molecule drugs and antibodies with selective activity against endothelin receptors.

6.
iScience ; 27(7): 110205, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39055928

RESUMO

Monoacylglycerol acyltransferase-2 (MOGAT2), encodes MOGAT enzyme in the re-synthesis of triacylglycerol and protects from metabolism disorders. While, its precise involvement in colorectal cancer (CRC) progression remains inadequately understood. Our study demonstrated that knockout of Mogat2 in Apcmin/+ mice expedited intestinal tumor growth and progression, indicating that Mogat2 plays a tumor-suppressing role in CRC. Mechanically, Mogat2 deletion resulted in a significant alter the gut microbiota, while Fecal Microbiota Transplantation (FMT) experiments demonstrated that the gut microbiota in Mogat2 deleted mice promoted tumor growth. Furthermore, we identified Mogat2 as a functional regulator suppressing CRC cell proliferation and tumor growth by inhibiting the NF-κB signaling pathway in vivo. Collectively, these results provide novel insights into the protective double roles of Mogat2, inhibiting of NF-κB pathway and keeping gut microbiota homeostasis in colorectal cancer, which may help the development of novel cancer treatments for CRC.

8.
Cytojournal ; 21: 15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841418

RESUMO

Objective: The objective of this study was to verify the clinical predictive performance of methylated cysteine dioxygenase type 1 (CDO1m) and CUGBP Elav-like family member 4 (CELF4m) in endometrial cancer (EC) women with postmenopausal bleeding (PMB). Material and Methods: A single-center, prospective, and case-control study was conducted in the Gansu Provincial Maternity and Child-care Hospital with 138 female postmenopausal patients enrolled in 2022. All patients underwent body mass index (BMI) detection, transvaginal ultrasonography (TVUS) detection, carbohydrate antigen 125 detection, and the cervical exfoliated cell CDO1/CELF4 gene methylation detection to analyze the sensitivity, specificity, and accuracy of different screening tests statistically with the biopsy and/or dilation and curettage (D&C) pathological diagnosis under hysteroscopy as the gold standard. Results: There was no significant difference in age between the EC group and the non-EC group, P = 0.492. Using quantitative polymerase chain reaction (qPCR) technology, we validated the CDO1 and CELF4 methylation detection with 87.5% sensitivity and 95.9% specificity as a useful strategy for the triage of women with PMB for the detection of EC. In addition, 100% of type II EC (n = 6) were positively detected by the CDO1 or CELF4 methylation test. Conclusion: The CDO1 and CELF4 methylation test with high specificity as an auxiliary diagnostic tool or alternative method provides physicians with a reference to distinguish between benign and malignant tumors in women with postmenopausal bleeding, to justify the necessity of using invasive methods to confirm diagnosis.

9.
Anal Chem ; 96(20): 7907-7925, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38713830
10.
J Exp Med ; 221(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805014

RESUMO

Phenotypic plasticity is a rising cancer hallmark, and lung adeno-to-squamous transition (AST) triggered by LKB1 inactivation is significantly associated with drug resistance. Mechanistic insights into AST are urgently needed to identify therapeutic vulnerability in LKB1-deficient lung cancer. Here, we find that ten-eleven translocation (TET)-mediated DNA demethylation is elevated during AST in KrasLSL-G12D/+; Lkb1L/L (KL) mice, and knockout of individual Tet genes reveals that Tet2 is required for squamous transition. TET2 promotes neutrophil infiltration through STAT3-mediated CXCL5 expression. Targeting the STAT3-CXCL5 nexus effectively inhibits squamous transition through reducing neutrophil infiltration. Interestingly, tumor-infiltrating neutrophils are laden with triglycerides and can transfer the lipid to tumor cells to promote cell proliferation and squamous transition. Pharmacological inhibition of macropinocytosis dramatically inhibits neutrophil-to-cancer cell lipid transfer and blocks squamous transition. These data uncover an epigenetic mechanism orchestrating phenotypic plasticity through regulating immune microenvironment and metabolic communication, and identify therapeutic strategies to inhibit AST.


Assuntos
Quimiocina CXCL5 , Proteínas de Ligação a DNA , Dioxigenases , Neoplasias Pulmonares , Neutrófilos , Proteínas Proto-Oncogênicas , Fator de Transcrição STAT3 , Animais , Neutrófilos/metabolismo , Fator de Transcrição STAT3/metabolismo , Camundongos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Quimiocina CXCL5/metabolismo , Quimiocina CXCL5/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Humanos , Dioxigenases/metabolismo , Pinocitose , Linhagem Celular Tumoral , Infiltração de Neutrófilos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Metabolismo dos Lipídeos
11.
Nature ; 631(8020): 459-466, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776963

RESUMO

Bitter taste receptors, particularly TAS2R14, play central roles in discerning a wide array of bitter substances, ranging from dietary components to pharmaceutical agents1,2. TAS2R14 is also widely expressed in extragustatory tissues, suggesting its extra roles in diverse physiological processes and potential therapeutic applications3. Here we present cryogenic electron microscopy structures of TAS2R14 in complex with aristolochic acid, flufenamic acid and compound 28.1, coupling with different G-protein subtypes. Uniquely, a cholesterol molecule is observed occupying what is typically an orthosteric site in class A G-protein-coupled receptors. The three potent agonists bind, individually, to the intracellular pockets, suggesting a distinct activation mechanism for this receptor. Comprehensive structural analysis, combined with mutagenesis and molecular dynamic simulation studies, elucidate the broad-spectrum ligand recognition and activation of the receptor by means of intricate multiple ligand-binding sites. Our study also uncovers the specific coupling modes of TAS2R14 with gustducin and Gi1 proteins. These findings should be instrumental in advancing knowledge of bitter taste perception and its broader implications in sensory biology and drug discovery.


Assuntos
Ácidos Aristolóquicos , Colesterol , Ácido Flufenâmico , Receptores Acoplados a Proteínas G , Paladar , Humanos , Ácidos Aristolóquicos/metabolismo , Ácidos Aristolóquicos/química , Ácidos Aristolóquicos/farmacologia , Sítios de Ligação/efeitos dos fármacos , Colesterol/química , Colesterol/metabolismo , Colesterol/farmacologia , Microscopia Crioeletrônica , Ácido Flufenâmico/química , Ácido Flufenâmico/metabolismo , Ácido Flufenâmico/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura , Paladar/efeitos dos fármacos , Paladar/fisiologia , Transducina/química , Transducina/metabolismo
12.
ChemSusChem ; : e202400987, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818947

RESUMO

Covalent organic frameworks (COFs) are one type of promising polymer semiconductors in solar-driven hydrogen production, but majority of COFs-based photocatalytic systems show low photocatalytic efficiency owing to lack of metal active sites. Herein, we reported II-Scheme heterojunction frameworks based on COF (TpPa-1) and metal-organic framework (HKUST-1) for highly efficient hydrogen production. The coordination bonding directed self-assembly of HKUST-1 on the surface of TpPa-1 endows the heterojunction frameworks (HKUST-1/TpPa-1) with strong interface interaction, optimized electronic structures and abundant redox active sites, thus remarkably boosting photocatalytic hydrogen evolution. The hydrogen evolution rate for optimal HKUST-1/TpPa-1 is as high as 10.50 mmol g-1 h-1, which is significantly enhanced when compared with that of their physical mixture (4.13 mmol g-1 h-1), TpPa-1 (0.013 mmol g-1 h-1) and Pt-based counterpart (6.70 mmol g-1 h-1). This work offers a facile approach to the construction of noble-metal-free II-Scheme heterojunctions based on framework materials for efficient solar energy conversion.

13.
ACS Omega ; 9(12): 13509-13521, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559974

RESUMO

With the escalating utilization of plastic products, global attention has been increasingly drawn to environmental pollution and recycling challenges stemming from plastic waste. Against this backdrop, biodegradable plastics have emerged as viable alternatives owing to their sustainability and capacity for biodegradation. Polylactic acid (PLA) presently commands the largest market share among biodegradable plastics, finding extensive application in products such as thin films, medical materials, and biodegradable straws. However, the widespread adoption of PLA is hindered by challenges such as high cost, low recycling rates, and complete degradation to H2O and CO2 in natural conditions. Therefore, it is imperative and time-sensitive to explore solutions for the depolymerization and re/upcycling of PLA waste plastics. This review comprehensively outlines the current landscape of PLA recycling methods, emphasizing the advantages and significance of chemical re/upcycling. The subsequent exploration encompasses recent breakthroughs and technical obstacles inherent in diverse chemical depolymerization methods. Ultimately, this review accentuates the impediments and forthcoming possibilities in the realm of PLA plastics, emphasizing the pursuit of closed-loop recycling and upcycling.

14.
J Water Health ; 22(4): 701-716, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678423

RESUMO

In order to identify and effectively control the impact of NO3- pollution on human health, on the basis of investigation, sampling, analysis and testing, statistical analysis software (SPSS19), groundwater pollution analysis software, Nemera comprehensive index method, correlation analysis method and human health risk assessment model are applied for analysis and research. The results indicate that the groundwater in the study area is mainly Class II water, with overall good water quality. The main influencing factors for producing Class IV are NO3-, Fe, F- and SO42-. The use of agricultural fertilizers is the main source of NO3- exceeding standards in groundwater in this area. There are significant differences in the health hazards caused by NO3- pollution in groundwater among different populations, and infants and young children are more susceptible to nitrate pollution. The division of pollution areas and high-risk groups plays an important guiding role in preventing health risks. The new achievements will help people improve their awareness of risk prevention, caring for the environment, respecting nature and implementing precise policies, promoting society to step onto the track of scientific and healthy development.


Assuntos
Água Subterrânea , Nitratos , Poluentes Químicos da Água , Nitratos/análise , Água Subterrânea/análise , Água Subterrânea/química , China , Poluentes Químicos da Água/análise , Humanos , Medição de Risco , Monitoramento Ambiental/métodos , Criança , Lactente , Pré-Escolar , Adulto , Adolescente , Adulto Jovem
15.
J Clin Invest ; 134(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618952

RESUMO

N6-Methyladenosine (m6A) is the most abundant posttranscriptional modification, and its contribution to cancer evolution has recently been appreciated. Renal cancer is the most common adult genitourinary cancer, approximately 85% of which is accounted for by the clear cell renal cell carcinoma (ccRCC) subtype characterized by VHL loss. However, it is unclear whether VHL loss in ccRCC affects m6A patterns. In this study, we demonstrate that VHL binds and promotes METTL3/METTL14 complex formation while VHL depletion suppresses m6A modification, which is distinctive from its canonical E3 ligase role. m6A RNA immunoprecipitation sequencing (RIP-Seq) coupled with RNA-Seq allows us to identify a selection of genes whose expression may be regulated by VHL-m6A signaling. Specifically, PIK3R3 is identified to be a critical gene whose mRNA stability is regulated by VHL in a m6A-dependent but HIF-independent manner. Functionally, PIK3R3 depletion promotes renal cancer cell growth and orthotopic tumor growth while its overexpression leads to decreased tumorigenesis. Mechanistically, the VHL-m6A-regulated PIK3R3 suppresses tumor growth by restraining PI3K/AKT activity. Taken together, we propose a mechanism by which VHL regulates m6A through modulation of METTL3/METTL14 complex formation, thereby promoting PIK3R3 mRNA stability and protein levels that are critical for regulating ccRCC tumorigenesis.


Assuntos
Adenina , Carcinoma de Células Renais , Neoplasias Renais , Adulto , Humanos , Carcinogênese/genética , Carcinoma de Células Renais/genética , Transformação Celular Neoplásica , Expressão Gênica , Neoplasias Renais/genética , Metiltransferases/genética , Fosfatidilinositol 3-Quinases/genética
16.
Food Funct ; 15(9): 4970-4982, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38606509

RESUMO

Inhibition of ferroptosis in intestinal epithelial cells serves as an attractive target for the development of therapeutic strategies for colitis. Pinobanksin, one of the main flavonoids derived from propolis, possesses significant anti-inflammatory effects and inhibits the cell death of several cell lines. Here, we evaluated whether pinobanksin influenced colitis by modulation of epithelial ferroptosis. Mice treated with 2.5% DSS dissolved in sterile distilled water were established for an acute colitis model. The mitochondrial morphology, colonic iron level, lipid peroxidation products MDA/4-HNE, and lipid reactive oxygen species levels were measured to assess ferroptosis in epithelial cells. RNA-seq and functional analyses were performed to reveal key genes mediating pinobanksin-exerted modulation of ferroptosis. We found that pinobanksin, at different doses, induced significant anti-colitis effects and inhibited the elevated ferroptosis in colonic epithelial cells isolated from DSS-treated mice largely by activating GPX4 (negative regulator of ferroptosis). Furthermore, RNA-seq assays indicated that pinobanksin significantly increased the cystine transporter SLC7A11 in colonic tissues from mice with colitis. Depletion of SLC7A11 largely blocked pinobanksin-induced promotion of cystine uptake/glutathione biosynthesis and suppression of ferroptosis in epithelial cells from mice with colitis or IEC-6 cells pretreated with RSL3. Altogether, pinobanksin alleviated DSS-induced colitis largely by inhibition of ferroptosis in epithelial cells. Activation of SLC7A11 by pinobanksin resulted in the promotion of cystine uptake and enhancement of glutathione biosynthesis. This work will provide novel guidance for the clinical use of pinobanksin to treat colitis through inhibition of epithelial ferroptosis.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Colite , Ferroptose , Glutationa , Animais , Humanos , Masculino , Camundongos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Ferroptose/efeitos dos fármacos , Flavonoides/farmacologia , Glutationa/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
Yeast ; 41(6): 369-378, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613186

RESUMO

Engineering Yarrowia lipolytica to produce astaxanthin provides a promising route. Here, Y. lipolytica M2 producing a titer of 181 mg/L astaxanthin was isolated by iterative atmospheric and room-temperature plasma mutagenesis and diphenylamine-mediated screening. Interestingly, a negative correlation was observed between cell biomass and astaxanthin production. To reveal the underlying mechanism, RNA-seq analysis of transcriptional changes was performed in high producer M2 and reference strain M1, and a total of 1379 differentially expressed genes were obtained. Data analysis revealed that carbon flux was elevated through lipid metabolism, acetyl-CoA and mevalonate supply, but restrained through central carbon metabolism in strain M2. Moreover, upregulation of other pathways such as ATP-binding cassette transporter and thiamine pyrophosphate possibly provided more cofactors for carotenoid hydroxylase and relieved cell membrane stress caused by astaxanthin insertion. These results suggest that balancing cell growth and astaxanthin production may be important to promote efficient biosynthesis of astaxanthin in Y. lipolytica.


Assuntos
Perfilação da Expressão Gênica , Xantofilas , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Xantofilas/metabolismo , Engenharia Metabólica , Transcriptoma , Regulação Fúngica da Expressão Gênica , Redes e Vias Metabólicas/genética , Análise do Fluxo Metabólico , Metabolismo dos Lipídeos , Biomassa
18.
Sci Adv ; 10(13): eadn3426, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536925

RESUMO

Intraoperative histology is essential for surgical guidance and decision-making. However, frozen-sectioned hematoxylin and eosin (H&E) staining suffers from degraded accuracy, whereas the gold-standard formalin-fixed and paraffin-embedded (FFPE) H&E is too lengthy for intraoperative use. Stimulated Raman scattering (SRS) microscopy has shown rapid histology of brain tissue with lipid/protein contrast but is challenging to yield images identical to nucleic acid-/protein-based FFPE stains interpretable to pathologists. Here, we report the development of a semi-supervised stimulated Raman CycleGAN model to convert fresh-tissue SRS images to H&E stains using unpaired training data. Within 3 minutes, stimulated Raman virtual histology (SRVH) results that matched perfectly with true H&E could be generated. A blind validation indicated that board-certified neuropathologists are able to differentiate histologic subtypes of human glioma on SRVH but hardly on conventional SRS images. SRVH may provide intraoperative diagnosis superior to frozen H&E in both speed and accuracy, extendable to other types of solid tumors.


Assuntos
Encéfalo , Corantes , Humanos , Inclusão em Parafina/métodos , Coloração e Rotulagem , Amarelo de Eosina-(YS) , Formaldeído
19.
Acta Trop ; 254: 107163, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38428630

RESUMO

Coxiella burnetii is the causative agent of zoonotic Q fever. Animals are the natural reservoirs of C. burnetii, and domestic livestock represent the major sources of human infection. C. burnetii infection in pregnant females may causes abortion during late pregnancy, whereby massive shedding of C. burnetii with abortion products becomes aerosolized and persists in the environment. Therefore, monitoring and surveillance of this infection in livestock is important for the prevention of the C. burnetii transmission. Previous serological surveys have shown that C. burnetii infection is endemic in livestock in China. However, few data are available on the diagnosis of C. burnetii as a cause of abortion by molecular methods in livestock. To get a better understanding of the impact of C. burnetii infection on domestic livestock in China, a real-time PCR investigation was carried out on collected samples from different domestic livestock suffering abortion during 2021-2023. A total of 338 samples collected from eight herds of five livestock species were elected. The results showed that 223 (66 %) of the collected samples were positive for C. burnetii DNA using real-time PCR. For the aborted samples, 82 % (128/15) of sheep, 81 % (34/42) of goats, 44 % (15/34) of cattle, 69 % (18/26) of camels, and 50 % (17/34) of donkeys were positive for C. burnetii. Besides, 44 % (8/18) and 4 % (1/25) of asymptomatic individuals of sheep and donkey were also positive for C. burnetii. In addition, the positive samples were further confirmed by amplification and sequencing of the C. burnetii-specific isocitrate dehydrogenase (icd) gene. Phylogenetic analysis based on specific gene fragments of icd genes revealed that the obtained sequences in this study were clustered into two different groups associated with different origin of hosts and geographic regions. This is the first report confirming that C. burnetii exists in aborted samples of sheep, goats, cattle, donkeys and camels in China. Further studies are needed to fully elucidate the epidemiology of this pathogen in livestock as well as the potential risks to public health.


Assuntos
Coxiella burnetii , Cabras , Gado , Febre Q , Reação em Cadeia da Polimerase em Tempo Real , Animais , Coxiella burnetii/genética , Coxiella burnetii/isolamento & purificação , Coxiella burnetii/classificação , China/epidemiologia , Febre Q/veterinária , Febre Q/microbiologia , Febre Q/epidemiologia , Gado/microbiologia , Ovinos , Feminino , Cabras/microbiologia , Aborto Animal/microbiologia , Bovinos , Gravidez , DNA Bacteriano/genética , Doenças dos Ovinos/microbiologia , Doenças dos Ovinos/epidemiologia
20.
Cells ; 13(2)2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38247878

RESUMO

BACKGROUND & AIMS: Acinar-to-ductal metaplasia (ADM) serves as a precursor event in the development of pancreatic ductal adenocarcinoma (PDAC) upon constitutive environmental and genetical stress. While the role of ADM in PDAC progression has been established, the molecular mechanisms underlying human ADM remain elusive. We previously demonstrated the induction of ADM in human acinar cells through the transforming growth factor beta (TGFß) signaling pathway. We aim to investigate the interaction between TGFß and Hippo pathways in mediating ADM. METHODS: RNA-sequencing was conducted on sorted normal primary human acinar, ductal, and AD (acinar cells that have undergone ADM) cells. ATAC-seq analysis was utilized to reveal the chromatin accessibility in these three cell types. ChIP-Seq of YAP1, SMAD4, and H3K27ac was performed to identify the gene targets of YAP1 and SMAD4. The role of YAP1/TAZ in ADM-driven cell proliferation, as well as in oncogenic KRAS driven proliferation, was assessed using sphere formation assay. RESULTS: AD cells have a unique transcription profile, with upregulated genes in open chromatin states in acinar cells. YAP1 and SMAD4 co-occupy the loci of ADM-related genes, including PROM1, HES1, and MMP7, co-regulating biological functions such as cell adhesion, cell migration, and inflammation. Overexpression of YAP1/TAZ promoted acinar cell proliferation but still required the TGFß pathway. YAP1/TAZ were also crucial for TGFß-induced sphere formation and were necessary for KRAS-induced proliferation. CONCLUSIONS: Our study reveals the intricate transition between acinar and AD states in human pancreatic tissues. It unveils the complex interaction between the Hippo and TGF-ß pathways during ADM, highlighting the pivotal role of YAP1/TAZ and SMAD4 in PDAC initiation.


Assuntos
Carcinoma Ductal Pancreático , Via de Sinalização Hippo , Neoplasias Pancreáticas , Fator de Crescimento Transformador beta , Humanos , Carcinoma Ductal Pancreático/genética , Cromatina , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras) , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA