Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theriogenology ; 209: 141-150, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393744

RESUMO

DNA binding inhibitory factor 3 (ID3) has been shown to have a key role in maintaining proliferation and differentiation. It has been suggested that ID3 may also affect mammalian ovarian function. However, the specific roles and mechanisms are unclear. In this study, the expression level of ID3 in cumulus cells (CCs) was inhibited by siRNA, and the downstream regulatory network of ID3 was uncovered by high-throughput sequencing. The effects of ID3 inhibition on mitochondrial function, progesterone synthesis, and oocyte maturation were further explored. The GO and KEGG analysis results showed that after ID3 inhibition, differentially expressed genes, including StAR, CYP11A1, and HSD3B1, were involved in cholesterol-related processes and progesterone-mediated oocyte maturation. Apoptosis in CC was increased, while the phosphorylation level of ERK1/2 was inhibited. During this process, mitochondrial dynamics and function were disrupted. In addition, the first polar body extrusion rate, ATP production and antioxidation capacity were reduced, which suggested that ID3 inhibition led to poor oocyte maturation and quality. The results will provide a new basis for understanding the biological roles of ID3 as well as cumulus cells.


Assuntos
Células do Cúmulo , Oócitos , Oogênese , Progesterona , Animais , Bovinos , Feminino , Células do Cúmulo/metabolismo , Mamíferos , Mitocôndrias , Oócitos/fisiologia , Oogênese/genética , Progesterona/farmacologia , Progesterona/metabolismo , Proteínas Inibidoras de Diferenciação/metabolismo
2.
Vet Med Sci ; 9(1): 326-335, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36446749

RESUMO

BACKGROUND: T-box transcription factor 2 (TBX2) is a member of T-box gene family whose members are highly conserved in evolution and encoding genes and are involved in the regulation of developmental processes. The encoding genes play an important role in growth and development. Although TBX2 has been widely studied in cancer cell growth and development, its biological functions in bovine cumulus cells remain unclear. OBJECTIVES: This study aimed to investigate the regulatory effects of TBX2 in bovine cumulus cells. METHODS: TBX2 gene was knockdown with siRNA to clarify the function in cellular physiological processes. Cell proliferation and cycle changes were determined by xCELLigence cell function analyzer and flow cytometry. Mitochondrial membrane potential and autophagy were detected by fluorescent dye staining and immunofluorescence techniques. Western blot and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) were used to detect the expression changes of proliferation and autophagy-related proteins. Aadenosine triphosphate (ATP) production, glucose metabolism, and cholesterol synthesis of cumulus cells were measured by optical density and chemiluminescence analysis. RESULTS: After inhibition of TBX2, the cell cycle was disrupted. The levels of apoptosis, ratio of light chain 3 beta II/I, and reactive oxygen species were increased. The proliferation, expansion ability, ATP production, and the amount of cholesterol secreted by cumulus cells were significantly decreased. CONCLUSIONS: TBX2 plays important roles in regulating the cells' proliferation, expansion, apoptosis, and autophagy; maintaining the mitochondrial function and cholesterol generation of bovine cumulus cells.


Assuntos
Autofagia , Células do Cúmulo , Feminino , Animais , Bovinos , Células do Cúmulo/metabolismo , Proliferação de Células , Apoptose/genética , Mitocôndrias , Colesterol/metabolismo , Colesterol/farmacologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...