Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(9): 6946-6962, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38377037

RESUMO

Pyroptosis mediated by gasdermin protein has shown great potential in cancer immunotherapies. However, the low expression of gasdermin proteins and the systemic toxicity of nonspecific pyroptosis limit its clinical application. Here, we designed a synthetic biology strategy to construct a tumor-specific pyroptosis-inducing nanoplatform M-CNP/Mn@pPHS, in which a pyroptosis-inducing plasmid (pPHS) was loaded onto a manganese (Mn)-doped calcium carbonate nanoparticle and wrapped in a tumor-derived cell membrane. M-CNP/Mn@pPHS showed an efficient tumor targeting ability. After its internalization by tumor cells, the degradation of M-CNP/Mn@pPHS in the acidic endosomal environment allowed the efficient endosomal escape of plasmid pPHS. To trigger tumor-specific pyroptosis, pPHS was designed according to the logic "AND gate circuit" strategy, with Hif-1α and Sox4 as two input signals and gasdermin D induced pyroptosis as output signal. Only in cells with high expression of Hif-1α and Sox4 simultaneously will the output signal gasdermin D be expressed. Since Hif-1α and Sox4 are both specifically expressed in tumor cells, M-CNP/Mn@pPHS induces the tumor-specific expression of gasdermin D and thus pyroptosis, triggering an efficient immune response with little systemic toxicity. The Mn2+ released from the nanoplatform further enhanced the antitumor immune response by stimulating the cGAS-STING pathway. Thus, M-CNP/Mn@pPHS efficiently inhibited tumor growth with 79.8% tumor regression in vivo. We demonstrate that this logic "AND gate circuit"-based gasdermin nanoplatform is a promising strategy for inducing tumor-specific pyroptosis with little systemic toxicity.


Assuntos
Neoplasias , Piroptose , Humanos , Gasderminas , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias/terapia , Imunoterapia , Lógica
2.
J Control Release ; 367: 61-75, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242210

RESUMO

Pyroptosis, mediated by gasdermin proteins, has shown excellent efficacy in facilitating cancer immunotherapy. The strategies commonly used to induce pyroptosis suffer from a lack of tissue specificity, resulting in the nonselective activation of pyroptosis and consequent systemic toxicity. Moreover, pyroptosis activation usually depends on caspase, which can induce inflammation and metabolic disorders. In this study, inspired by the tumor-specific expression of SRY-box transcription factor 4 (Sox4) and matrix metalloproteinase 2 (MMP2), we constructed a doubly regulated plasmid, pGMD, that expresses a biomimetic gasdermin D (GSDMD) protein to induce the caspase-independent pyroptosis of tumor cells. To deliver pGMD to tumor cells, we used a hyaluronic acid (HA)-shelled calcium carbonate nanoplatform, H-CNP@pGMD, which effectively degrades in the acidic endosomal environment, releasing pGMD into the cytoplasm of tumor cells. Upon the initiation of Sox4, biomimetic GSDMD was expressed and cleaved by MMP2 to induce tumor-cell-specific pyroptosis. H-CNP@pGMD effectively inhibited tumor growth and induced strong immune memory effects, preventing tumor recurrence. We demonstrate that H-CNP@pGMD-induced biomimetic GSDMD expression and tumor-specific pyroptosis provide a novel approach to boost cancer immunotherapy.


Assuntos
Neoplasias , Piroptose , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Gasderminas , Biomimética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/farmacologia , Caspases/metabolismo , Caspases/farmacologia , Neoplasias/terapia
3.
Artigo em Inglês | MEDLINE | ID: mdl-35549005

RESUMO

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer, and it is associated with a high recurrence rate, metastatic potential, and poor prognosis. Thus, effective therapeutic strategies for TNBC are urgently required. The epidermal growth factor receptor (EGFR) is considered to be a potential therapeutic target for TNBC. However, there are limitations to the use of targeted therapies, such as afatinib (AFT), particularly drug resistance. Here, we investigated a poly(d,l-lactide-glycolide) (PLGA)-based intelligent bionic nanoplatform, termed AFT/2-BP@PLGA@MD, which combined targeted therapy with immunotherapy. In this platform, PLGA was used to encapsulate 2-bromo-palmitate (2-BP), a palmitoylation inhibitor, to enhance the efficacy of AFT against TNBC cells. PLGA was coated with a cancer cell membrane anchored with a cleavable peptide by matrix metalloproteinase-2 to block programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1). 2-BP significantly enhanced the capacity of AFT to inhibit the proliferation and migration of tumor cells in vitro. Moreover, the tumor cell membrane-coated AFT/2-BP@PLGA@MD nanoparticles exhibited enhanced tumor targeting ability in vivo. The AFT/2-BP@PLGA@MD nanoparticles significantly inhibited the growth and metastasis of 4T1 tumor and prolonged the survival of tumor-bearing mice. The nanoparticles also triggered antitumor immune response. Collectively, we report an effective therapeutic strategy for clinically refractory TNBC.

4.
Small ; 18(20): e2107001, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35434938

RESUMO

Radiotherapy (RT) has been shown to cause immunogenic cell death (ICD) of cancer cells, which promote the release of tumor-associated antigens, and trigger the cancer-immunity cycle (CIC). However, ICD induced by RT usually does not occur in hypoxic tumor cells due to their resistance to radiation. Moreover, RT also induces programmed death ligand 1 (PD-L1) upregulation on tumor cells, which has an inhibitory effect on T lymphocytes. Therefore, therapy based on CIC must selectively target the restricted steps of antitumor immunity. Herein, the authors design a versatile three-in-one assembling nanoparticle that can simultaneously execute these obstacles. The amphiphilic peptide drug conjugate NIA-D1, containing the hydrophobic radio-sensitizer 2-(2-nitroimidazol-1-yl) acetic acid (NIA), a peptide substrate of matrix metalloproteinase-2, and a hydrophilic PD-L1 antagonist D PPA-1, is constructed and co-assembled with hydrophobic Toll-like receptor (TLR) 7/8 agonist R848 to form nanoparticle NIA-D1@R848. The NIA-D1@R848 nanoparticles combined with RT can trigger the apoptosis of tumor cells and initiate the CIC. In the presence of R848, it promotes the maturation of dendritic cells, which together with protein programmed cell death protein 1 (PD-1) and its ligand PD-L1  blockade to relieve T cell suppression, and amplify the antitumor immune cycle. In conclusion, a functionalized three-in-one nanoparticle NIA-D1@R848 is successfully constructed, which can induce strong systemic antitumor immune response.


Assuntos
Nanopartículas , Neoplasias , Receptor 8 Toll-Like/agonistas , Adjuvantes Imunológicos , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Humanos , Imunidade , Imunoterapia , Metaloproteinase 2 da Matriz , Nanopartículas/química , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico , Receptor 7 Toll-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...