Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(1): 113, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385215

RESUMO

Given the differences in geomorphology, climate, hydrology, and human activities in various regions, lake chemometrics may also vary. However, the spatial distribution of lake chemistry and the factors affecting such pattern are still unclear. Here, we collected data for carbon, nitrogen, and phosphorus from published literature and databases in 224 lakes and calculated the trophic status index to represent the nutrient classification state of lakes. We found that lakes with high carbon concentrations were located in the Tibet-Qinghai Limnetic Region of western China, whereas lakes with high nitrogen and phosphorus concentrations were located in the Inner Mongolia-Xinjiang Limnetic Region and Northeast Limnetic Region of northern China. Areas with larger cropland and urban residential land (such as the junction of the three lake regions, i.e., the Northeast Limnetic Region, East Limnetic Region, and Inner Mongolia-Xinjiang Limnetic Region) tended to have lakes with high nitrogen and phosphorus concentrations. Our analysis suggested that spatial distribution of carbon, nitrogen, and phosphorus concentrations reflect the effect of climate, geomorphology, and land use in each lake region and nationwide.


Assuntos
Lagos , Fósforo , Humanos , Fósforo/análise , Nitrogênio/análise , Carbono/análise , Monitoramento Ambiental , China
2.
Sci Total Environ ; 831: 154807, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35341862

RESUMO

Global warming and nitrogen (N) deposition are known to unbalance the stoichiometry of carbon (C), N, and phosphorus (P) in terrestrial plants, but it is unclear how water availability regulates their effects along a natural aridity gradient. Here, we conducted manipulative experiments to determine the effects of experimental warming (WT) and N addition (NT) on plant stoichiometry in desert, typical, and meadow steppes with decreasing aridity. WT elevated air temperatures by 1.2-2.9 °C using open-top chambers. WT increased forb C:N ratio and thus its N use efficiency and competitiveness in desert steppes, whereas WT reduced forb C:N and C:P ratios in typical and meadow steppes. Plant N:P ratio, which reflects nutrient limitation, was reduced by WT in desert steppes but not for typical or meadow steppes. NT reduced plant C:N ratios and increased N:P ratios in all three steppes. NT reduced forb C:P ratios in desert and typical steppes, but it enhanced grass C:P ratio in meadow steppes, indicating an enhancement of P use efficiency and competitiveness of grasses in wet steppes. WT and NT had synergetic effects on grass C:N and C:P ratios in all three steppes, which helps to increase grasses' productivity. Under WT or NT, the changes in community C:N ratio were positively correlated with increasing aridity, indicating that aridity increases plants' N use efficiency. However, aridity negatively affected the changes in N:P ratios under NT but not WT, which suggests that aridity mitigates P limitation induced by N deposition. Our results imply that warming could shift the dominant functional group into forbs in dry steppes due to altered stoichiometry, whereas grasses become dominated plants in wet steppes under increasing N deposition. We suggest that global changes might break the stoichiometric balance of plants and water availability could strongly modify such processes in semi-arid steppes.


Assuntos
Pradaria , Nitrogênio , Aquecimento Global , Nitrogênio/análise , Plantas , Poaceae , Solo , Água
3.
Sci Total Environ ; 753: 142018, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33207484

RESUMO

Global warming and nitrogen (N) deposition are known to affect root dynamics in grasslands. However, previous studies were based only on a single ecosystem type, so it is unclear how warming and N addition affect root traits (root biomass, root-shoot ratio, root production and turnover) along the aridity gradient. In this study, we conducted an experiment to determine the effects of warming and N addition on root traits in desert, typical, and meadow grasslands in northern China, where the aridity gradually decreases from west to east across the region. Warming increased root-shoot ratio in dry year due to decline in soil water, but had a downward trend in root production and turnover in all three grasslands. N addition decreased root-shoot ratio in humid year due to increase in soil N, whereas did not significantly affect root production in any grasslands and increased root turnover in desert and meadow grasslands rather than typical grassland. Warming combined with N addition had negatively additive effects on root turnover in typical and meadow grasslands rather than desert grassland. N addition-induced changes in root biomass and root-shoot ratio were negatively affected by aridity in dry year. Aridity positively affected responses of root production and turnover to warming but negatively affected those responses to N addition. However, root-shoot ratio, root production and turnover under warming combined with N addition were not affected by aridity. Our results suggest that warming suppresses root carbon (C) input but N addition may exacerbate it in temperate grasslands, and warming combined with N addition suppresses it only in wet grasslands. Aridity promotes root C input under warming but suppresses it under N addition. However, aridity may little affect soil C and nutrient dynamics under global warming combined with N deposition in temperate grasslands in the future.


Assuntos
Pradaria , Nitrogênio , Biomassa , China , Ecossistema , Nitrogênio/análise , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA