Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.037
Filtrar
1.
J Environ Sci (China) ; 150: 332-339, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306408

RESUMO

NH3-SCR (SCR: Selective catalytic reduction) is an effective technology for the de-NOx process from both mobile and stationary pollution sources, and the most commonly used catalysts are the vanadia-based catalysts. An innovative V2O5-CeO2/TaTiOx catalyst for NOx removal was prepared in this study. The influences of Ce and Ta in the V2O5-CeO2/TaTiOx catalyst on the SCR performance and physicochemical properties were investigated. The V2O5-CeO2/TaTiOx catalyst not only exhibited excellent SCR activity in a wide temperature window, but also presented strong resistance to H2O and SO2 at 275 ℃. A series of characterization methods was used to study the catalysts, including H2-temperature programmed reduction, X-ray photoelectron spectroscopy, NH3-temperature programmed desorption, etc. It was discovered that a synergistic effect existed between Ce and Ta species. The introduction of Ce and Ta enlarged the specific surface area, increased the amount of acid sites and the ratio of Ce3+, (V3++V4+) and Oα, and strengthened the redox capability which were related to synergistic effect between Ce and Ta species, significantly improving the NH3-SCR activity.


Assuntos
Amônia , Cério , Titânio , Compostos de Vanádio , Catálise , Cério/química , Titânio/química , Amônia/química , Compostos de Vanádio/química , Poluentes Atmosféricos/química , Oxirredução , Poluição do Ar/prevenção & controle
2.
Gene ; 932: 148908, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39218414

RESUMO

BACKGROUND: Although progress has been made in accurate diagnosis and targeted treatments, breast cancer (BC) patients with metastasis still present a grim prognosis. With the continuous emergence and development of new personalized and precision medicine targeting specific tumor biomarkers, there is an urgent need to find new metastatic and prognostic biomarkers for BC patients. METHODS: We were dedicated to identifying genes linked to metastasis and prognosis in breast cancer through a combination of in silico analysis and experimental validation. RESULTS: A total of 25 overlap differentially expressed genes were identified. Ten hub genes (namely MRPL13, CTR9, TCEB1, RPLP0, TIMM8B, METTL1, GOLT1B, PLK2, PARL and MANBA) were identified and confirmed. MRPL13, TCEB1 and GOLT1B were shown to be associated with the worse overall survival (OS) and were optionally chosen for further verification by western blot. Only MRPL13 was found associated with cell invasion, and the expression of MRPL13 in metastatic BC was significantly higher than in primary BC. CONCLUSION: We proposed MRPL13 could be a potential novel biomarker for the metastasis and prognosis of breast cancer.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Simulação por Computador , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , Perfilação da Expressão Gênica/métodos , Linhagem Celular Tumoral , Pessoa de Meia-Idade
3.
Chembiochem ; : e202400564, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248206

RESUMO

Directed evolution seeks to evolve target genes at a rate far exceeding the natural mutation rate, thereby endowing cellular and enzymatic properties with desired traits. In vivo continuous directed evolution achieves these purposes by generating libraries within living cells, enabling a continuous cycle of mutant generation and selection, enhancing the exploration of gene variants. Continuous evolution has become powerful tools for unraveling evolution mechanism and improving cellular and enzymatic properties. This review categorizes current continuous evolution into three distinct classes: non-targeted chromosomal, targeted chromosomal, and extra-chromosomal hypermutation approaches. It also compares various continuous evolution strategies based on different principles, providing a reference for selecting suitable methods for specific evolutionary goals. Furthermore, this review discusses the two primary limitations for further widespread application of in vivo continuous evolution, which are lack of general applicability and insufficient mutagenic capability. We envision that developing generally applicable mutagenic components and methods to enhance mutation rates for in vivo continuous evolution are promising future directions for wide range applications of continuous evolution.

4.
Int Immunopharmacol ; 142(Pt A): 113087, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39241522

RESUMO

Parkinson's Disease (PD) is a degenerative disease driven by neuroinflammation. Nuclear receptor subfamily 1 group H member 4 (NR1H4), a nuclear receptor involved in metabolic and inflammatory regulation, is found to be widely expressed in central nervous system. Previous studies suggested the protective role of NR1H4 in various diseases related to inflammation, whether NR1H4 participates in PD progression remains unknown. To investigate the role of NR1H4 in neuroinflammation regulation, especially astrocyte activation during PD, siRNA and adenovirus were used to manipulate Nr1h4 expression. RNA-sequencing (RNA-seq), quantitative real-time PCR, enzyme-linked immunosorbent assay, Chromatin immunoprecipitation and western blotting were performed to further study the underlying mechanisms. We identified that NR1H4 was down-regulated during PD progression. In vitro experiments suggested that Nr1h4 knockdown led to inflammatory response, reactive oxygen species generation and astrocytes activation whereasNr1h4 overexpressionhad the opposite effects. The results of RNA-seq on astrocytes revealed that NR1H4 manipulated neuroinflammation in a CEBPß/NF-κB dependent manner. Additionally, pharmacological activation of NR1H4 via Obeticholic acid ameliorated neuroinflammation and promoted neuronal survival. Our study first proved the neuroprotective effects of NR1H4against PD via inhibiting astrocyte activation and neuroinflammation in a CEBPß/NF-κB dependent manner.

5.
Nat Commun ; 15(1): 7989, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39284811

RESUMO

There is a growing interest in the creation of engineered condensates formed via liquid-liquid phase separation (LLPS) to exert precise cellular control in prokaryotes. However, de novo design of cellular condensates to control metabolic flux or protein translation remains a challenge. Here, we present a synthetic condensate platform, generated through the incorporation of artificial, disordered proteins to realize specific functions in Bacillus subtilis. To achieve this, the "stacking blocks" strategy is developed to rationally design a series of LLPS-promoting proteins for programming condensates. Through the targeted recruitment of biomolecules, our investigation demonstrates that cellular condensates effectively sequester biosynthetic pathways. We successfully harness this capability to enhance the biosynthesis of 2'-fucosyllactose by 123.3%. Furthermore, we find that condensates can enhance the translation specificity of tailored enzyme fourfold, and can increase N-acetylmannosamine titer by 75.0%. Collectively, these results lay the foundation for the design of engineered condensates endowed with multifunctional capacities.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Hexosaminas , Engenharia Metabólica , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Engenharia Metabólica/métodos , Hexosaminas/biossíntese , Hexosaminas/metabolismo , Hexosaminas/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Vias Biossintéticas , Engenharia de Proteínas/métodos , Biossíntese de Proteínas , Trissacarídeos/metabolismo , Trissacarídeos/biossíntese , Trissacarídeos/química , Extração Líquido-Líquido/métodos
6.
BMC Cancer ; 24(1): 1152, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289669

RESUMO

BACKGROUND: Tumor-infiltrating lymphocytes (TILs) are significantly implicated in regulating the tumor immune microenvironment (TIME) and immunotherapeutic response. However, little is known about the impact of the resident and exhausted status of TILs in hepatocellular carcinoma (HCC). METHODS: Single-cell RNA sequencing data was applied to discover resident and exhausted signatures of TILs. Survival outcomes, biological function, immune infiltration, genomic variation, immunotherapeutic efficacy, and sorafenib response were further explored the clinical significance and molecular association of TILs in HCC. Moreover, a candidate gene with predictive capability for the dismal subtype was identified through univariate Cox regression analysis, survival analysis, and the BEST website. RESULTS: Single-cell analysis revealed that CD8 + T, CD4 + T, and NK cells were strongly associated with resident and exhausted patterns. Specific resident and exhausted signatures for each subpopulation were extracted in HCC. Further multivariate Cox analysis revealed that the ratio of resident to exhausted CD4 + T cells in TIME was an independent prognostic factor. After incorporating tumor purity with the ratio of resident to exhausted CD4 + T cells, we stratified HCC patients into three subtypes and found that (i) CD4 residencyhighexhaustionlow subtype was endowed with favorable prognosis, immune activation, and sensitivity to immunotherapy; (ii) CD4 exhaustionhighresidencylow subtype was characterized by genome instability and sensitivity to sorafenib; (iii) Immune-desert subtype was associated with malignant-related pathways and poor prognosis. Furthermore, spindle assembly abnormal protein 6 homolog (SASS6) was identified as a key gene, which accurately predicted the immune-desert subtype. Prognostic analysis as well as in vitro and in vivo experiments further demonstrated that SASS6 was closely associated with tumor prognosis, proliferation, and migration. CONCLUSIONS: The ratio of resident to exhausted CD4 + T cells shows promise as a potential biomarker for HCC prognosis and immunotherapy response and SASS6 may serve as a biomarker and therapeutic target for prognostic assessment of HCC.


Assuntos
Linfócitos T CD4-Positivos , Carcinoma Hepatocelular , Imunoterapia , Neoplasias Hepáticas , Linfócitos do Interstício Tumoral , Microambiente Tumoral , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/mortalidade , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/mortalidade , Humanos , Prognóstico , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Masculino , Feminino , Sorafenibe/uso terapêutico , Sorafenibe/farmacologia , Análise de Célula Única , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética
7.
Adv Sci (Weinh) ; : e2408705, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287062

RESUMO

Given the extensive heterogeneity and variability, understanding cellular functions and regulatory mechanisms through the analysis of multi-omics datasets becomes extremely challenging. Here, a comprehensive modeling framework of multi-omics machine learning and metabolic network models are proposed that covers various cellular biological processes across multiple scales. This model on an extensive normalized compendium of Bacillus subtilis is validated, which encompasses gene expression data from environmental perturbations, transcriptional regulation, signal transduction, protein translation, and growth measurements. Comparison with high-throughput experimental data shows that EM_iBsu1209-ME, constructed on this basis, can accurately predict the expression of 605 genes and the synthesis of 23 metabolites under different conditions. This study paves the way for the construction of comprehensive biological databases and high-performance multi-omics metabolic models to achieve accurate predictive analysis in exploring complex mechanisms of cell genotypes and phenotypes.

8.
Int Immunopharmacol ; 142(Pt A): 113147, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270345

RESUMO

Cancer neoantigens are tumor-specific non-synonymous mutant peptides that activate the immune system to produce an anti-tumor response. Personalized cancer vaccines based on neoantigens are currently one of the most promising therapeutic approaches for cancer treatment. By utilizing the unique mutations within each patient's tumor, these vaccines aim to elicit a strong and specific immune response against cancer cells. However, the identification of neoantigens remains challenging due to the low accuracy of current prediction tools and the high false-positive rate of candidate neoantigens. Since the concept of "proteogenomics" emerged in 2004, it has evolved rapidly with the increased sequencing depth of next-generation sequencing technologies and the maturation of mass spectrometry-based proteomics technologies to become a more comprehensive approach to neoantigen identification, allowing the discovery of high-confidence candidate neoantigens. In this review, we summarize the reason why cancer neoantigens have become attractive targets for immunotherapy, the mechanism of cancer vaccines and the advances in cancer immunotherapy. Considerations relevant to the application emerging of proteogenomics technologies for neoantigen identification and challenges in this field are described.

9.
IUBMB Life ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266460

RESUMO

The functional role and molecular mechanisms of small-nucleolar RNA host gene 14 (SNHG14) in triple-negative breast cancer (TNBC) progression remain unclear. The expression levels of SNHG14 in breast cancer samples and cell lines were determined using real-time quantitative polymerase chain reaction. Cell proliferation, migration, and invasion abilities were detected using MTS and transwell assays. By RNA sequencing, differentially expressed genes were identified between the SNHG14 siRNA and the negative control group. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were used to predict the targets and pathways regulated by SNHG14. pRAF, pMEK, and pERK expression were measured by western blot. The xenograft model was constructed to access the biological function of SNHG14 in vivo. A minimal patient-derived xenograft model was established to evaluate the sensitivity to chemotherapy drugs. Our data indicated that SNHG14 expression was increased in TNBC tissues and cell lines. SNHG14 knockdown attenuated the proliferation, migration, and invasion abilities of TNBC cells both in vivo and in vitro. High SNHG14 expression was associated with lymph node metastasis and a high Ki67 index. The targets of SNHG14 were mainly enriched in the MAPK signaling pathway. pRAF, pMEK, and pERK expression were downregulated after being transfected with SNHG14 siRNA. Compared with the negative control group, the expression of CACNA1I, DUSP8, FGF17, FGFR4, FOS, PDGFRB, and DDIT3 was increased, and the expression of MKNK1 was decreased in the SNHG14 siRNA group. Minimal patient-derived xenograft model demonstrated that knockdown of SNHG14 enhanced the sensitivity to Docetaxel in vivo. Compared with the DMSO group, the proliferation of Docetaxel-resistant MDA-MB-231 cells was decreased in Dabrafenib, PD184352, and FR180204 treatment groups. SNHG14 knockdown inhibits TNBC progression by regulating the ERK/MAPK signaling pathway, which provides evidence for SNHG14 as a potential target for TNBC therapy.

10.
Hum Pathol ; 152: 105650, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39187207

RESUMO

Extranodal natural killer (NK)/T-cell lymphoma (ENKTL) is prevalent in the Asian population; however, little is known about its molecular characteristics. In this study, we examined the CD30 expression in ENKTLs and then performed whole exome sequencing on ten CD30+ ENKTL and CD30- ENKTL paired samples. CD30 was positive in 55.74% of the ENKTLs. Single nucleotide and insertion/deletion polymorphism analyses revealed that 53.41% of the somatic mutations in CD30+ ENKTLs were shared with CD30- ENKTLs, including mutations in SERPINA9, MEGF6, MUC6, and KDM5A. Frequently mutated genes were primarily associated with cell proliferation and migration, the tumor microenvironment, energy and metabolism, epigenetic modulators, vascular remodeling, and neurological function. PI3K-AKT, cAMP, cGMP-PKG, and AMPK pathways were enriched in both CD30+ and CD30- ENKTLs. Copy number variation analysis identified a unique set of genes in CD30+ ENKTLs, including T-cell receptor genes (TRBV6-1 and TRBV8), cell cycle-related genes (MYC and CCND3), immune-related genes (GPS2, IFNA14, TTC38, and CTSV), and a large number of ubiquitination-related genes (USP32, TRIM23, TRIM2, DUSP7, and UBE2QL1). BCL10 mutation was identified in 6/10 CD30+ ENKTLs and 7/10 CD30- ENKTLs. Immunohistochemical analysis revealed that the expression pattern of BCL10 in normal lymphoid tissues was similar to that of BCL2; however, its expression in ENKTL cells was significantly higher (67.92% vs. 16.98%), implying the potential application of BCL10 inhibitors for treating ENKTLs. These results provide new insights into the genetic characteristics of CD30+ and CD30- ENKTLs, and could facilitate the clinical development of novel therapies for ENKTL.


Assuntos
Antígeno Ki-1 , Linfoma Extranodal de Células T-NK , Mutação , Humanos , Linfoma Extranodal de Células T-NK/genética , Linfoma Extranodal de Células T-NK/patologia , Linfoma Extranodal de Células T-NK/imunologia , Masculino , Antígeno Ki-1/genética , Antígeno Ki-1/análise , Feminino , Pessoa de Meia-Idade , Adulto , Sequenciamento do Exoma , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Variações do Número de Cópias de DNA , Genômica
11.
Medicine (Baltimore) ; 103(35): e39523, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39213243

RESUMO

To characterize the clinicopathological features and treatment outcomes of juvenile idiopathic inflammatory myopathies (JIIM) with anti-melanoma differentiation associated gene 5 (MDA5) antibodies in a Chinese cohort. Anti-MDA5 antibody was detected by immunodot assay and indirect immunofluorescence assay on HEK293 cells in a series of Chinese JIIM cohort between 2005 and 2022. The clinical features, histological findings, and treatment outcomes of these anti-MDA5-antibody-positive patients were summarized. Of 59 JIIM patients, 3 (5.08%) were found to be anti-MDA5-antibody-positive. The frequency of anti-MDA5 antibody did not show significant difference between adult idiopathic inflammatory myopathies and JIIM cohorts (P = .720). The disease duration in patients with anti-MDA5 antibody was 2.83 ±â€…1.04 months. All 3 patients had typical skin lesions including Gottron sign and heliotrope rash, while interstitial lung disease and arthritis was only found in 1 patient. All 3 patients showed normal creatine kinase levels. On muscle biopsy, diffuse major histocompatibility complex class-I expression was seen in 3 patients and myxovirus-resistance protein A expression was found in 2 patients. All patients received long-term follow-up (6.42 ±â€…4.01 years). They were all drug-free and showed favorable treatment outcome with prednisone and additional immunosuppressant. Our study indicates that anti-MDA5 antibodies may not be common in Chinese JIIM. Anti-MDA5-positive JIIMs are characterized by typical skin lesions of dermatomyositis, normal CK levels, and increased major histocompatibility complex class-I expression. JIIMs with anti-MDA5 generally have good response to immunotherapies.


Assuntos
Autoanticorpos , Helicase IFIH1 Induzida por Interferon , Miosite , Humanos , Helicase IFIH1 Induzida por Interferon/imunologia , Masculino , Feminino , Criança , Autoanticorpos/sangue , Autoanticorpos/imunologia , Miosite/imunologia , Miosite/tratamento farmacológico , Resultado do Tratamento , Adolescente , Pré-Escolar , China , Imunossupressores/uso terapêutico
12.
Org Lett ; 26(33): 7004-7009, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39133868

RESUMO

A Pd-catalyzed decarbonylative Michaelis-Arbuzov reaction of carboxylic acids and triaryl phosphites for preparing aryl phosphonates under anhydride-free conditions has been reported. In this context, triaryl phosphites serve as both reagents for activating the carboxylic acids and substrates for the reaction. There have been no reports to date of efficient and direct methods for the in situ activation of carboxylic acids using triaryl phosphites. In comparison to known methods, this reaction avoids the use of organohalides and has an excellent functional group tolerance for the synthesis of various aryl phosphonates from triaryl phosphites and carboxylic acids. This reaction is scalable and applicable to the synthesis of aryl phosphonates featuring bioactive fragments.

13.
Trends Microbiol ; 32(8): 791-806, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39111288

RESUMO

In recent years, genetic circuit-based regulation of metabolic flux in microbial cell factories has received significant attention. In this review, we describe a pipeline for the design and construction of genetic circuits for metabolic flux optimization. In particular, we summarize the recent advances in computationally assisted prediction of critical metabolic nodes and genetic circuit design automation. Further, we introduce strategies for constructing high-performance genetic circuits. We also summarize the latest applications of genetic circuits in the dynamic regulation of metabolism and high-throughput screening. Finally, we discuss the challenges and prospects associated with the design and construction of sophisticated genetic circuits. Through this review, we aim to provide a theoretical basis for designing and constructing high-performance genetic circuits to optimize metabolic flux.


Assuntos
Redes Reguladoras de Genes , Redes e Vias Metabólicas , Redes e Vias Metabólicas/genética , Engenharia Metabólica/métodos , Biologia Sintética/métodos , Bactérias/genética , Bactérias/metabolismo
14.
Mol Neurobiol ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103716

RESUMO

Sleep disorders represent prevalent non-motor symptoms in Parkinson's disease (PD), affecting over 90% of the PD population. Insomnia, characterized by difficulties in initiating and maintaining sleep, emerges as the most frequently reported sleep disorder in PD, with prevalence rates reported from 27 to 80% across studies. Insomnia not only significantly impacts the quality of life of PD patients but is also associated with cognitive impairment, motor disabilities, and emotional deterioration. This comprehensive review aims to delve into the mechanisms underlying insomnia in PD, including neurodegenerative changes, basal ganglia beta oscillations, and circadian rhythms, to gain insights into the neural pathways involved. Additionally, the review explores the risk factors and comorbidities associated with insomnia in PD, providing valuable insights into its management. Special attention is given to the challenges faced by healthcare providers in delivering care to PD patients and the impact of caregiving roles on patients' quality of life. Overall, this review provides a comprehensive understanding of insomnia in PD and highlights the importance of addressing this common sleep disorder in PD patients.

15.
ACS Omega ; 9(31): 33471-33481, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39130537

RESUMO

Pyrite cinder (PyC) containing polymetallics is difficult to use due to the low grade of metals and complex mineral phase composition, the low reutilized rate of which causes the wastage of resources. In this paper, a novel approach based on mineral phase reconstruction was proposed to recover Cu, Co, and Fe from PyC. A feasible reduction roasting process was developed for mineral phase reconstruction, followed by leaching with sulfuric acid to recover Cu and Co; finally, the leaching residue was separated by a magnetic tube to recover Fe. The maximum copper and cobalt extract rates of 86.15 and 79.61% were achieved respectively under the optimized conditions of reduction roasting for 30 min at 550 °C and 30% CO/N2 volume fraction, followed by leaching for 4 h at a liquid-solid ratio of 4:1 (mL/g), a mass concentration of 160 g/L sulfuric acid, and a temperature of 70 °C. The iron concentrate can be obtained with 63.08% Fe grade and 98.91% recovery rate by magnetic separation at a magnetic field strength of 28.26 kA/m. The mechanism analysis results of mineral phase reconstruction revealed that the primary copper sulfide in PyC was transformed into free copper oxide, combined copper oxide, and secondary copper sulfide without changing the valence state of copper by reduction roasting, resulting in a higher extraction rate of copper. Meanwhile, cobaltosic oxide and cobalt ferrite in PyC were transformed into cobalt sulfate and cobalt sulfide with the reduction of Co(III) to Co(II), improving the extraction rate of cobalt.

16.
J Agric Food Chem ; 72(36): 19985-19993, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39207302

RESUMO

Ovalbumin (OVA) is a high-quality protein for humans. Modifying microorganisms to produce proteins offers a solution to potential food protein shortages. In this study, OVA was expressed in Saccharomyces cerevisiae. Initially, screening signal peptides led to extracellular OVA reaching 3.4 mg/L using the INU1 signal peptide. Coexpressing Kar2 and PDI increased OVA production to 5.1 mg/L. Optimizing the expression levels of regulators OPI1, INO2, and INO4 expanded the endoplasmic reticulum membrane, raising yield to 5.5 mg/L. Combining both strategies increased OVA production to 6.2 mg/L, 82% higher than control. This strategy also enhanced secretion of other proteins. Finally, fed-batch fermentation in a 3-L bioreactor significantly boosted OVA production to 116.3 mg/L. This study provides insights for the heterologous synthesis of other high-quality proteins for future food applications.


Assuntos
Retículo Endoplasmático , Ovalbumina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Retículo Endoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ovalbumina/metabolismo , Fermentação , Animais , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética
17.
Environ Pollut ; 360: 124653, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39095002

RESUMO

Protozoa play a pivotal role in the microbial cycle, and ciliated protozoan grazing habits are associated with dimethyl sulfide (DMS) cycle. Many studies have explored the impacts of nanoplastics (NPs) and microplastics (MPs) on ecotoxicological effects of ciliates. However, limited research exists on NPs and MPs influences on the production of organic sulfur compounds. The impact of NPs and MPs on the production of dimethyl sulfoxide (DMSO) and carbonyl sulfide (COS) remains unclear. Therefore, we examined the impacts of three concentrations (1 × 105, 5 × 105, and 1 × 106 items/mL) of polystyrene (PS) NPs (50 nm) and MPs (1 and 5 µm) on the ecotoxicology and DMS/dimethylsulfoniopropionate (DMSP)/DMSO/COS production in the ciliate Uronema marinum. NPs and MPs exposure were found to reduce the abundance, growth rate, volume, and biomass of U. marinum. Additionally, NPs and MPs increased the superoxide anion radical (O2˙─) production rates and malondialdehyde (MDA) contents (24 h), leading to a decline in glutathione (GSH) content and an ascend in superoxide dismutase (SOD) activity to mitigate the effects of reactive oxygen species (ROS). Exposure to PS NPs and MPs decreased the ingestion rates of algae by 7.5-14.4%, resulting in decreases in DMS production by 56.8-85.4%, with no significant impact on DMSO production. The results suggest a distinct pathway for the production of DMSO or COS compared to DMS. These findings help us to understand the NPs and MPs impacts on the marine ecosystem and organic sulfur compound yield, potentially influencing the global climate.


Assuntos
Antioxidantes , Cilióforos , Microplásticos , Cilióforos/fisiologia , Antioxidantes/metabolismo , Microplásticos/toxicidade , Poluentes Químicos da Água , Nanopartículas/toxicidade , Sulfetos/toxicidade
18.
Environ Pollut ; 360: 124649, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39095004

RESUMO

Dimethyl sulfide (DMS) is a prevalent volatile organic sulfur compound relevant to the global climate. Ecotoxicological effects of nano- and microplastics (NPs and MPs) on phytoplankton, zooplankton, and bacteria have been investigated by numerous studies. Yet, the influences of NPs/MPs on dimethylated sulfur compounds remains understudied. Herein, we investigated the impacts of polystyrene (PS) NPs/MPs (80 nm, 1 µm, and 10 µm) on zooplankton grazing, chlorophyll a (Chl a) concentration, bacterial community, dimethylsulfoniopropionate (DMSP), and DMS production in the microcosms. Our findings revealed that rotifer grazing increased the production of DMS in the absence of NPs/MPs but did not promote DMS production when exposed to NPs/MPs. The ingestion rates of the rotifer and copepod exposed to NPs/MPs at high concentrations were significantly reduced. NPs/MPs exposure significantly decreased DMS levels in the treatments with rotifers compared to the animal controls. In the bacterial microcosms, smaller NPs/MPs sizes were more detrimental to Chl a concentrations compared to larger sizes. The study revealed a stimulatory effect on Chl a concentrations, DMSPd concentrations, and bacterial abundances when exposed to 10 µm MP with low concentrations. The effects of NPs/MPs on DMS concentrations were both dose- and size-dependent, with NPs showing greater toxicity compared to larger MPs. NPs/MPs led to changes in bacterial community compositions, dependent on both dosage and size. NPs caused a notable decrease in the alpha diversities and richness of bacteria compared to MPs. These results provide insights into the influences of NPs/MPs on food webs, and subsequently organic sulfur compounds cycles.


Assuntos
Bactérias , Poluentes Químicos da Água , Zooplâncton , Animais , Zooplâncton/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Microplásticos/toxicidade , Compostos de Enxofre , Sulfetos/toxicidade , Nanopartículas/toxicidade , Clorofila A/metabolismo , Plásticos
19.
mSphere ; : e0038024, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189780

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is crucial for protecting vulnerable individuals, yet individuals with type 2 diabetes mellitus (T2DM) often exhibit impaired vaccine responses. Emerging evidence suggests that the composition of the host microbiota, crucial in immune regulation and development, influences vaccine efficacy. This study aimed to characterize the relationships between the SARS-CoV-2 inactivated vaccine and the host microbiota (specifically, gut and lung microbiota) of C57BL/6 mice with T2DM. Employing 16S rRNA metagenomic sequencing and ultra-high-performance liquid chromatography-mass spectrometry, we observed lower alpha diversity and distinct beta diversity in fecal microbiota before vaccination and in gut microbiota 28 days post-vaccination between T2DM mice and healthy mice. Compared with healthy mice, T2DM mice showed a higher Firmicutes/Bacteroidetes ratio 28 days post-vaccination. Significant alterations in gut microbiota composition were detected following vaccination, while lung microbiota remained unchanged. T2DM was associated with a diminished initial IgG antibody response against the spike protein, which subsequently normalized after 28 days. Notably, the initial IgG response positively correlated with fecal microbiota alpha diversity pre-vaccination. Furthermore, after 28 days, increased relative abundance of gut probiotics (Bifidobacterium and Lactobacillus) and higher levels of the gut bacterial tryptophan metabolite, indole acrylic acid, were positively associated with IgG levels. These findings suggest a potential link between vaccine efficacy and gut microbiota composition. Nonetheless, further research is warranted to elucidate the precise mechanisms underlying the impact of the gut microbiome on vaccine response. Overall, this study enhances our understanding of the intricate relationships among host microbiota, SARS-CoV-2 vaccination, and T2DM, with potential implications for improving vaccine efficacy. IMPORTANCE: Over 7 million deaths attributed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by 6 May 2024 underscore the urgent need for effective vaccination strategies. However, individuals with type 2 diabetes mellitus (T2DM) have been identified as particularly vulnerable and display compromised immune responses to vaccines. Concurrently, increasing evidence suggests that the composition and diversity of gut microbiota, crucial regulators of immune function, may influence the efficacy of vaccines. Against this backdrop, our study explores the complex interplay among SARS-CoV-2 inactivated vaccination, T2DM, and host microbiota. We discover that T2DM compromises the initial immune response to the SARS-CoV-2 inactivated vaccine, and this response is positively correlated with specific features of the gut microbiota, such as alpha diversity. We also demonstrate that the vaccination itself induces alterations in the composition and structure of the gut microbiota. These findings illuminate potential links between the gut microbiota and vaccine efficacy in individuals with T2DM, offering valuable insights that could enhance vaccine responses in this high-risk population.

20.
Biotechnol Bioeng ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965781

RESUMO

Menaquinone-7 (MK-7), a form of vitamin K2, supports bone health and prevents arterial calcification. Microbial fermentation for MK-7 production has attracted widespread attention because of its low cost and short production cycles. However, insufficient substrate supply, unbalanced precursor synthesis, and low catalytic efficiency of key enzymes severely limited the efficiency of MK-7 synthesis. In this study, utilizing Bacillus subtilis BSAT01 (with an initial MK-7 titer of 231.0 mg/L) obtained in our previous study, the glycerol metabolism pathway was first enhanced to increase the 3-deoxy-arabino-heptulonate 7-phosphate (DHAP) supply, which led to an increase in MK-7 titer to 259.7 mg/L. Subsequently, a combination of knockout strategies predicted by the genome-scale metabolic model etiBsu1209 was employed to optimize the central carbon metabolism pathway, and the resulting strain showed an increase in MK-7 production from 259.7 to 318.3 mg/L. Finally, model predictions revealed the methylerythritol phosphate pathway as the major restriction pathway, and the pathway flux was increased by heterologous introduction (Introduction of Dxs derived from Escherichia coli) and fusion expression (End-to-end fusion of two enzymes by a linker peptide), resulting in a strain with a titer of 451.0 mg/L in a shake flask and 474.0 mg/L in a 50-L bioreactor. This study achieved efficient MK-7 synthesis in B. subtilis, laying the foundation for large-scale MK-7 bioproduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA