Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3602, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684700

RESUMO

Glioblastoma (GBM) is a highly lethal type of cancer. GBM recurrence following chemoradiation is typically attributed to the regrowth of invasive and resistant cells. Therefore, there is a pressing need to gain a deeper understanding of the mechanisms underlying GBM resistance to chemoradiation and its ability to infiltrate. Using a combination of transcriptomic, proteomic, and phosphoproteomic analyses, longitudinal imaging, organotypic cultures, functional assays, animal studies, and clinical data analyses, we demonstrate that chemoradiation and brain vasculature induce cell transition to a functional state named VC-Resist (vessel co-opting and resistant cell state). This cell state is midway along the transcriptomic axis between proneural and mesenchymal GBM cells and is closer to the AC/MES1-like state. VC-Resist GBM cells are highly vessel co-opting, allowing significant infiltration into the surrounding brain tissue and homing to the perivascular niche, which in turn induces even more VC-Resist transition. The molecular and functional characteristics of this FGFR1-YAP1-dependent GBM cell state, including resistance to DNA damage, enrichment in the G2M phase, and induction of senescence/stemness pathways, contribute to its enhanced resistance to chemoradiation. These findings demonstrate how vessel co-option, perivascular niche, and GBM cell plasticity jointly drive resistance to therapy during GBM recurrence.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Camundongos , Quimiorradioterapia/métodos , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Tolerância a Radiação , Proteínas de Sinalização YAP/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Proteômica
2.
Cancer Cell ; 34(3): 379-395.e7, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30205043

RESUMO

The current consensus recognizes four main medulloblastoma subgroups (wingless, Sonic hedgehog, group 3 and group 4). While medulloblastoma subgroups have been characterized extensively at the (epi-)genomic and transcriptomic levels, the proteome and phosphoproteome landscape remain to be comprehensively elucidated. Using quantitative (phospho)-proteomics in primary human medulloblastomas, we unravel distinct posttranscriptional regulation leading to highly divergent oncogenic signaling and kinase activity profiles in groups 3 and 4 medulloblastomas. Specifically, proteomic and phosphoproteomic analyses identify aberrant ERBB4-SRC signaling in group 4. Hence, enforced expression of an activated SRC combined with p53 inactivation induces murine tumors that resemble group 4 medulloblastoma. Therefore, our integrative proteogenomics approach unveils an oncogenic pathway and potential therapeutic vulnerability in the most common medulloblastoma subgroup.


Assuntos
Neoplasias Cerebelares/patologia , Meduloblastoma/patologia , Receptor ErbB-4/metabolismo , Quinases da Família src/metabolismo , Adolescente , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , Cerebelo/patologia , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Lactente , Masculino , Meduloblastoma/genética , Camundongos , Camundongos Transgênicos , Fosforilação , Proteoma/metabolismo , Proteômica/métodos , Transdução de Sinais , Quinases da Família src/genética
3.
Front Genet ; 5: 152, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24910641

RESUMO

Precision medicine (PM) requires the delivery of individually adapted medical care based on the genetic characteristics of each patient and his/her tumor. The last decade witnessed the development of high-throughput technologies such as microarrays and next-generation sequencing which paved the way to PM in the field of oncology. While the cost of these technologies decreases, we are facing an exponential increase in the amount of data produced. Our ability to use this information in daily practice relies strongly on the availability of an efficient bioinformatics system that assists in the translation of knowledge from the bench towards molecular targeting and diagnosis. Clinical trials and routine diagnoses constitute different approaches, both requiring a strong bioinformatics environment capable of (i) warranting the integration and the traceability of data, (ii) ensuring the correct processing and analyses of genomic data, and (iii) applying well-defined and reproducible procedures for workflow management and decision-making. To address the issues, a seamless information system was developed at Institut Curie which facilitates the data integration and tracks in real-time the processing of individual samples. Moreover, computational pipelines were developed to identify reliably genomic alterations and mutations from the molecular profiles of each patient. After a rigorous quality control, a meaningful report is delivered to the clinicians and biologists for the therapeutic decision. The complete bioinformatics environment and the key points of its implementation are presented in the context of the SHIVA clinical trial, a multicentric randomized phase II trial comparing targeted therapy based on tumor molecular profiling versus conventional therapy in patients with refractory cancer. The numerous challenges faced in practice during the setting up and the conduct of this trial are discussed as an illustration of PM application.

4.
Cancer Genet Cytogenet ; 176(2): 121-6, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17656254

RESUMO

About 5% of gliomas occur in a familial context, which suggests a genetic origin, but the predisposing molecular factors remain unknown in most cases. A series of nine familial gliomas were characterized with 1-megabase resolution BAC array-based comparative genomic hybridization (aCGH) together with germline sequence analysis of TP53. This series was compared with a literature series of familial gliomas and a personal series of sporadic gliomas, analyzed by chromosome CGH and aCGH, respectively. No significant difference was noted between the three populations in terms of clinical characteristics, pathologic features, and the most frequent chromosomal alterations, including loss of 1p, 10p, 10q, 13q, and 19q, and gain of 7p, 7q, 16p, 18q, 19p, 19q, 20p, and 22q. However, a genomic region located in 6q was more frequently gained in our series of familial as compared to sporadic gliomas (P=0.028). A germline TP53 mutation was observed in 1/9 cases, which suggests Li-Fraumeni syndrome. Interestingly, the Pro allele in the codon 72 of TP53 was observed in 5/9 tumors. Although familial and sporadic gliomas share very similar cytogenetic quantitative patterns, aCGH is a promising technique for the detection of small genomic differences of potential significance.


Assuntos
Neoplasias Encefálicas/genética , Família , Genes p53 , Mutação em Linhagem Germinativa , Glioma/genética , Adulto , Idoso , Desequilíbrio Alélico , Sequência de Bases , Análise Mutacional de DNA/métodos , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único
5.
Bioinformatics ; 22(17): 2066-73, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16820431

RESUMO

MOTIVATION: Microarray-based CGH (Comparative Genomic Hybridization), transcriptome arrays and other large-scale genomic technologies are now routinely used to generate a vast amount of genomic profiles. Exploratory analysis of this data is crucial in helping to understand the data and to help form biological hypotheses. This step requires visualization of the data in a meaningful way to visualize the results and to perform first level analyses. RESULTS: We have developed a graphical user interface for visualization and first level analysis of molecular profiles. It is currently in use at the Institut Curie for cancer research projects involving CGH arrays, transcriptome arrays, SNP (single nucleotide polymorphism) arrays, loss of heterozygosity results (LOH), and Chromatin ImmunoPrecipitation arrays (ChIP chips). The interface offers the possibility of studying these different types of information in a consistent way. Several views are proposed, such as the classical CGH karyotype view or genome-wide multi-tumor comparison. Many functionalities for analyzing CGH data are provided by the interface, including looking for recurrent regions of alterations, confrontation to transcriptome data or clinical information, and clustering. Our tool consists of PHP scripts and of an applet written in Java. It can be run on public datasets at http://bioinfo.curie.fr/vamp AVAILABILITY: The VAMP software (Visualization and Analysis of array-CGH,transcriptome and other Molecular Profiles) is available upon request. It can be tested on public datasets at http://bioinfo.curie.fr/vamp. The documentation is available at http://bioinfo.curie.fr/vamp/doc.


Assuntos
Mapeamento Cromossômico/métodos , Proteoma/metabolismo , Análise de Sequência de DNA/métodos , Software , Fatores de Transcrição/metabolismo , Interface Usuário-Computador , Algoritmos , Gráficos por Computador , Sistemas de Gerenciamento de Base de Dados , Bases de Dados de Proteínas , Dosagem de Genes/genética , Armazenamento e Recuperação da Informação/métodos , Proteoma/genética , Fatores de Transcrição/genética
6.
Nucleic Acids Res ; 34(Web Server issue): W477-81, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16845053

RESUMO

Assessing variations in DNA copy number is crucial for understanding constitutional or somatic diseases, particularly cancers. The recently developed array-CGH (comparative genomic hybridization) technology allows this to be investigated at the genomic level. We report the availability of a web tool for analysing array-CGH data. CAPweb (CGH array Analysis Platform on the Web) is intended as a user-friendly tool enabling biologists to completely analyse CGH arrays from the raw data to the visualization and biological interpretation. The user typically performs the following bioinformatics steps of a CGH array project within CAPweb: the secure upload of the results of CGH array image analysis and of the array annotation (genomic position of the probes); first level analysis of each array, including automatic normalization of the data (for correcting experimental biases), breakpoint detection and status assignment (gain, loss or normal); validation or deletion of the analysis based on a summary report and quality criteria; visualization and biological analysis of the genomic profiles and results through a user-friendly interface. CAPweb is accessible at http://bioinfo.curie.fr/CAPweb.


Assuntos
Biologia Computacional/métodos , Dosagem de Genes , Genômica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Software , Quebra Cromossômica , Gráficos por Computador , DNA/análise , Internet , Interface Usuário-Computador
7.
BMC Bioinformatics ; 7: 264, 2006 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-16716215

RESUMO

BACKGROUND: Array-based comparative genomic hybridization (array-CGH) is a recently developed technique for analyzing changes in DNA copy number. As in all microarray analyses, normalization is required to correct for experimental artifacts while preserving the true biological signal. We investigated various sources of systematic variation in array-CGH data and identified two distinct types of spatial effect of no biological relevance as the predominant experimental artifacts: continuous spatial gradients and local spatial bias. Local spatial bias affects a large proportion of arrays, and has not previously been considered in array-CGH experiments. RESULTS: We show that existing normalization techniques do not correct these spatial effects properly. We therefore developed an automatic method for the spatial normalization of array-CGH data. This method makes it possible to delineate and to eliminate and/or correct areas affected by spatial bias. It is based on the combination of a spatial segmentation algorithm called NEM (Neighborhood Expectation Maximization) and spatial trend estimation. We defined quality criteria for array-CGH data, demonstrating significant improvements in data quality with our method for three data sets coming from two different platforms (198, 175 and 26 BAC-arrays). CONCLUSION: We have designed an automatic algorithm for the spatial normalization of BAC CGH-array data, preventing the misinterpretation of experimental artifacts as biologically relevant outliers in the genomic profile. This algorithm is implemented in the R package MANOR (Micro-Array NORmalization), which is described at http://bioinfo.curie.fr/projects/manor and available from the Bioconductor site http://www.bioconductor.org. It can also be tested on the CAPweb bioinformatics platform at http://bioinfo.curie.fr/CAPweb.


Assuntos
Algoritmos , Artefatos , Mapeamento Cromossômico/métodos , Hibridização In Situ/métodos , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de DNA/métodos , Sequência de Bases , Simulação por Computador , Interpretação Estatística de Dados , Dosagem de Genes , Modelos Estatísticos , Dados de Sequência Molecular
8.
Cell Cycle ; 4(12): 1842-6, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16294040

RESUMO

Neuroblastoma (NB) is a frequent paediatric extra cranial solid tumor characterized by the occurrence of unbalanced chromosome translocations, frequently, but not exclusively, involving chromosomes 1 and 17. We have used a 1 Mb resolution BAC array to further refine the mapping of breakpoints in NB cell lines. Replication timing profiles were evaluated in 7 NB cell lines, using DNAs from G1 and S phases flow sorted nuclei hybridised on the same array. Strikingly, these replication timing profiles were highly similar between the different NB cell lines. Furthermore, a significant level of similarity was also observed between NB cell lines and lymphoblastoid cells. A segmentation analysis using the Adaptative Weights Smoothing procedure was performed to determine regions of coordinate replication. More than 50% of the breakpoints mapped to early replicating regions, which account for 23.7% of the total genome. The breakpoints frequency per 10(8) bases was therefore 10.84 for early replicating regions, whereas it was only 2.94 for late replicating regions, these difference being highly significant (p < 10(-4)). This strong association was also observed when chromosomes 1 and 17, the two most frequent translocation partners in NB were excluded from the statistical analysis. These results unambiguously establish a link between unbalanced translocations, whose most likely mechanism of occurrence relies on break-induced replication, and early replication of the genome.


Assuntos
Quebra Cromossômica/genética , Período de Replicação do DNA/genética , Neuroblastoma/genética , Linhagem Celular Tumoral , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 17/genética , Genoma Humano/genética , Humanos , Neuroblastoma/patologia , Fase S/genética , Translocação Genética/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...