Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 67: 102901, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37776708

RESUMO

OBJECTIVE: NRF2 is a master transcription factor that regulates the stress response. NRF2 is frequently mutated and activated in human esophageal squamous cell carcinoma (ESCC), which drives resistance to chemotherapy and radiation therapy. Therefore, a great need exists for NRF2 inhibitors for targeted therapy of NRF2high ESCC. DESIGN: We performed high-throughput screening of two compound libraries from which hit compounds were further validated in human ESCC cells and a genetically modified mouse model. The mechanism of action of one compound was explored by biochemical assays. RESULTS: Using high-throughput screening of two small molecule compound libraries, we identified 11 hit compounds as potential NRF2 inhibitors with minimal cytotoxicity at specified concentrations. We then validated two of these compounds, pyrimethamine and mitoxantrone, by demonstrating their dose- and time-dependent inhibitory effects on the expression of NRF2 and its target genes in two NRF2Mut human ESCC cells (KYSE70 and KYSE180). RNAseq and qPCR confirmed the suppression of global NRF2 signaling by these two compounds. Mechanistically, pyrimethamine reduced NRF2 half-life by promoting NRF2 ubiquitination and degradation in KYSE70 and KYSE180 cells. Expression of an Nrf2E79Q allele in mouse esophageal epithelium (Sox2CreER;LSL-Nrf2E79Q/+) resulted in an NRF2high phenotype, which included squamous hyperplasia, hyperkeratinization, and hyperactive glycolysis. Treatment with pyrimethamine (30 mg/kg/day, p.o.) suppressed the NRF2high esophageal phenotype with no observed toxicity. CONCLUSION: We have identified and validated pyrimethamine as an NRF2 inhibitor that may be rapidly tested in the clinic for NRF2high ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/terapia , Neoplasias Esofágicas/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Hiperplasia , Linhagem Celular Tumoral , Proliferação de Células
2.
Acta Biomater ; 170: 250-259, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659730

RESUMO

The interactions between polymers and the immune system remains poorly controlled. In some instances, the immune system can produce antibodies specific to polymer constituents. Indeed, roughly half of pegloticase patients without immunomodulation develop high titers of anti-PEG antibodies (APA) to the PEG polymers on pegloticase, which then quickly clear the drug from circulation and render the gout treatment ineffective. Here, using pegloticase as a model drug, we show that addition of high molecular weight (MW) free (unconjugated) PEG to pegloticase allows us to control the immunogenicity and mitigates APA induction in mice. Compared to pegloticase mixed with saline, mice repeatedly dosed with pegloticase containing different MW or amount of free PEG possessed 4- to 12- fold lower anti-PEG IgG, and 6- to 10- fold lower anti-PEG IgM, after 3 rounds of pegloticase dosed every 2 weeks. The markedly reduced APA levels, together with competitive inhibition by free PEG, restored the prolonged circulation of pegloticase to levels observed in APA-naïve animals. In contrast, mice with pegloticase-induced APA eliminated nearly all pegloticase from the circulation within just four hours post-injection. These results support the growing literature demonstrating free PEG may effectively suppress drug-induced APA, which in turn may offer sustained therapeutic benefits without requiring broad immunomodulation. We also showed free PEG effectively blocked the PEGylated protein from binding with cells expressing PEG-specific B cell receptors. It provides a template of how we may be able to tune the interactions and immunogenicity of other polymer-modified therapeutics. STATEMENT OF SIGNIFICANCE: A major challenge with engineering materials for drug delivery is their interactions with the immune system. For instance, our body can produce high levels of anti-PEG antibodies (APA). Unfortunately, the field currently lack tools to limit immunostimulation or overcome pre-existing anti-PEG antibodies, without using broad immunosuppression. Here, we showed that simply introducing free PEG into a clinical formulation of PEG-uricase can effectively limit induction of anti-PEG antibodies, and restore their prolonged circulation upon repeated dosing. Our work offers a readily translatable method to safely and effectively restore the use PEG-drugs in patients with PEG-immunity, and provides a template to use unconjugated polymers with low immunogenicity to regulate interactions with the immune system for other polymer-modified therapeutics.


Assuntos
Anticorpos , Urato Oxidase , Humanos , Animais , Camundongos , Peso Molecular , Urato Oxidase/uso terapêutico , Anticorpos/farmacologia , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico
3.
Sci Rep ; 12(1): 21383, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496470

RESUMO

Brown adipose tissue (BAT) is a fat tissue specialized in heat production (non-shivering thermogenesis) and used by mammals to defend core body temperature when exposed to cold. Several studies have shown that during non-shivering thermogenesis the increase in BAT oxygen demand is met by a local and specific increase in tissue's blood flow. While the vasculature of BAT has been extensively studied postmortem in rodents using histology, optical and CT imaging techniques, vasculature changes during stimulation of non-shivering thermogenesis have never been directly detected in vivo. Here, by using computed tomography (CT) angiography with gold nanoparticles we investigate, non-invasively, changes in BAT vasculature during adrenergic stimulation of non-shivering thermogenesis by norepinephrine, a vasoconstrictor known to mediate brown fat heat production, and by CL 316,243, a specific ß3-adrenergic agonist also known to elicit BAT thermogenesis in rodents. We found that while CL 316,243 causes local vasodilation in BAT, with little impact on the rest of the vasculature throughout the body, norepinephrine leads to local vasodilation in addition to peripheral vasoconstriction. As a result, a significantly greater relative increase in BAT perfusion is observed following the injection of NE compared to CL. This study demonstrates the use of in vivo CT angiography as an effective tool in assessing vascular reactivity in BAT both qualitatively and quantitatively in preclinical studies.


Assuntos
Tecido Adiposo Marrom , Nanopartículas Metálicas , Animais , Camundongos , Tecido Adiposo Marrom/fisiologia , Adrenérgicos , Ouro , Termogênese/fisiologia , Temperatura Baixa , Norepinefrina/farmacologia , Mamíferos
4.
J Control Release ; 338: 804-812, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34481925

RESUMO

Pegloticase is an enzyme used to reduce serum uric acid levels in patients with chronic, treatment-refractory gout. Clinically, about 40% of patients develop high titers of anti-PEG antibodies (APA) after initial treatment, which in turn quickly eliminate subsequent doses of pegloticase from the systemic circulation and render the treatment ineffective. We previously found that pre-infusion with high MW free PEG (40 kDa) can serve as a decoy to saturate circulating APA, preventing binding to a subsequently administered dose of PEG-liposomes and restoring their prolonged circulation in mice, without any detectible toxicity. Here, we investigated the use of 40 kDa free PEG to restore the circulation of radio-labeled pegloticase in mice using longitudinal Positron Emission Tomography (PET) imaging over 4 days. Mice injected with pegloticase developed appreciable APA titers by Day 9, which further increased through Day 14. Compared to naïve mice, mice with pegloticase-induced APA rapidly cleared 89Zr-labeled pegloticase, with ~75% lower pegloticase concentrations in the circulation at four hours after treatment. The 96-h AUC in APA+ mice was less than 30% of the AUC in naïve mice. In contrast, pre-infusion of free PEG into PEG-sensitized mice restored the AUC of pegloticase to ~80% of that seen in naïve mice, resulting in a similar biodistribution to pegloticase in naïve mice over time. These results suggest that pre-infusion of free PEG may be a promising strategy to enable the safe and efficacious use of pegloticase and other PEGylated drugs in patients that have previously failed therapy due to induced APA.


Assuntos
Gota , Animais , Humanos , Camundongos , Polietilenoglicóis , Distribuição Tecidual , Urato Oxidase , Ácido Úrico
5.
Bone ; 151: 116021, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34087386

RESUMO

The age at which astronauts experience microgravity is a critical consideration for skeletal health and similarly has clinical relevance for musculoskeletal disuse on Earth. While astronauts are extensively studied for bone and other physiological changes, rodent studies enable direct evaluation of skeletal changes with microgravity. Yet, mouse spaceflight studies have predominately evaluated tissues from young, growing mice. We evaluated bone microarchitecture in tibiae and femurs from Young (9-week-old) and Mature (32-weeks-old) female, C57BL/6N mice flown in microgravity for ~2 and ~3 weeks, respectively. Microgravity-induced changes were both compartment- and site-specific. Changes were greater in trabecular versus cortical bone in Mature mice exposed to microgravity (-40.0% Tb. BV/TV vs -4.4% Ct. BV/TV), and bone loss was greater in the proximal tibia as compared to the distal femur. Trabecular thickness in Young mice increased by +25.0% on Earth and no significant difference following microgravity. In Mature mice exposed to microgravity, trabecular thickness rapidly decreased (-24.5%) while no change was detected in age-matched mice that were maintained on Earth. Mature mice exposed to microgravity experienced greater bone loss than Young mice with net skeletal growth. Moreover, machine learning classification models confirmed that microgravity exposure-driven decrements in trabecular microarchitecture and cortical structure occurred disproportionately in Mature than in Young mice. Our results suggest that age of disuse onset may have clinical implications in osteoporotic or other at-risk populations on Earth and may contribute to understanding bone loss patterns in astronauts.


Assuntos
Doenças Ósseas Metabólicas , Ausência de Peso , Animais , Densidade Óssea , Feminino , Fêmur/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Ausência de Peso/efeitos adversos
6.
PLoS One ; 15(4): e0230818, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32315311

RESUMO

The microgravity conditions of prolonged spaceflight are known to result in skeletal muscle atrophy that leads to diminished functional performance. To assess if inhibition of the growth factor myostatin has potential to reverse these effects, mice were treated with a myostatin antibody while housed on the International Space Station. Grip strength of ground control mice increased 3.1% compared to baseline values over the 6 weeks of the study, whereas grip strength measured for the first time in space showed flight animals to be -7.8% decreased in strength compared to baseline values. Control mice in space exhibited, compared to ground-based controls, a smaller increase in DEXA-measured muscle mass (+3.9% vs +5.6% respectively) although the difference was not significant. All individual flight limb muscles analyzed (except for the EDL) weighed significantly less than their ground counterparts at the study end (range -4.4% to -28.4%). Treatment with myostatin antibody YN41 was able to prevent many of these space-induced muscle changes. YN41 was able to block the reduction in muscle grip strength caused by spaceflight and was able to significantly increase the weight of all muscles of flight mice (apart from the EDL). Muscles of YN41-treated flight mice weighed as much as muscles from Ground IgG mice, with the exception of the soleus, demonstrating the ability to prevent spaceflight-induced atrophy. Muscle gene expression analysis demonstrated significant effects of microgravity and myostatin inhibition on many genes. Gamt and Actc1 gene expression was modulated by microgravity and YN41 in opposing directions. Myostatin inhibition did not overcome the significant reduction of microgravity on femoral BMD nor did it increase femoral or vertebral BMD in ground control mice. In summary, myostatin inhibition may be an effective countermeasure to detrimental consequences of skeletal muscle under microgravity conditions.


Assuntos
Força Muscular/genética , Músculo Esquelético/fisiologia , Atrofia Muscular/genética , Miostatina/genética , Actinas/genética , Animais , Extremidades/fisiologia , Fêmur/fisiologia , Expressão Gênica/genética , Guanidinoacetato N-Metiltransferase/genética , Imunoglobulina G/genética , Camundongos , Camundongos Endogâmicos BALB C , Força Muscular/fisiologia , Atrofia Muscular/fisiopatologia , Voo Espacial/métodos , Ausência de Peso
7.
Calcif Tissue Int ; 106(2): 180-193, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31583426

RESUMO

Radiation therapy and estrogen deficiency can damage healthy bone and lead to an increased fracture risk. The goal of this study is to develop a mouse model for radiation therapy using a fractionated biologically equivalent dose for cervical cancer treatment in both pre- and postmenopausal women. Thirty-two female C57BL/6 mice 13 weeks of age were divided into four groups: Sham + non-irradiated (SHAM + NR), Sham + irradiated (SHAM + IRR), ovariectomy + non-irradiated (OVX + NR) and ovariectomy + irradiated (OVX + IRR). The irradiated mice received a 6 Gy dose of X-rays to the hindlimbs at Day 2, Day 4 and Day 7 (18 Gy total). Tissues were collected at Day 35. DEXA, microCT analysis and FEA were used to quantify structural and functional changes at the proximal tibia, midshaft femur, proximal femur and L1 vertebra. There was a significant (p < 0.05) decline in proximal tibia trabecular BV/TV from (1) IRR compared to NR mice within Sham (- 46%) and OVX (- 41%); (2) OVX versus Sham within NR mice (- 36%) and IRR mice (- 30%). With homogenous material properties applied to the proximal tibia mesh using FEA, there was (1) an increase in whole bone (trabecular + cortical) structural stiffness from IRR compared to NR mice within Sham (+ 10%) and OVX (+ 15%); (2) a decrease in stiffness from OVX versus Sham within NR mice (- 18%) and IRR mice (- 14%). Fractionated irradiation and ovariectomy both had a negative effect on skeletal microarchitecture. Ovariectomy had a systemic effect, while skeletal radiation damage was largely specific to trabecular bone within the X-ray field.


Assuntos
Osso e Ossos/fisiologia , Estradiol/deficiência , Lesões Experimentais por Radiação , Animais , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/efeitos da radiação , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/efeitos da radiação , Modelos Animais de Doenças , Estradiol/sangue , Estradiol/farmacologia , Feminino , Fêmur/efeitos dos fármacos , Fêmur/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Ovariectomia , Lesões Experimentais por Radiação/complicações , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/fisiopatologia , Radiografia , Radioterapia/efeitos adversos , Dosagem Radioterapêutica , Tíbia/efeitos dos fármacos , Tíbia/efeitos da radiação , Microtomografia por Raio-X
8.
Sci Rep ; 9(1): 14428, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594977

RESUMO

While joint damage is the primary co-morbidity of hemophilia, osteoporosis and osteopenia are also observed. Coagulation factor VIII deficient (FVIII-/-) mice develop an osteoporotic phenotype in the absence of induced hemarthrosis that is exacerbated two weeks after an induced joint injury. Here we have compared comprehensively the bone health of clotting factor VIII, factor IX, and Von Willebrand Factor knockout (FVIII-/-, FIX-/-, and VWF-/- respectively) mice both in the absence of joint hemorrhage and following induced joint injury. We found FVIII-/- and FIX-/- mice, but not VWF-/- mice, developmentally have an osteoporotic phenotype. Unilateral induced hemarthrosis causes further bone damage in both FVIII-/- and FIX-/- mice, but has little effect on VWF-/- bone health, indicating that the FVIII.VWF complex is not required for normal bone remodeling in vivo. To further investigate the bone healing following hemarthrosis in hemophilia we examined a two week time course using microCT, serum chemistry, and histological analysis. Elevated ratio of osteoprotegerin (OPG)/receptor activator of nuclear factor-kappa B ligand (RANKL), increased osterix+ osteoblastic cells, and decreased smoothness of the cortical bone surface were evident within several days of injury, indicative of acute heterotopic mineralization along the cortical surface. This was closely followed by increased interleukin-6 (IL-6) levels, increased osteoclast numbers, and significant trabecular bone loss. Uncoupled and disorganized bone formation and resorption continued for the duration of the study resulting in significant deterioration of the joint. Further elucidation of the shared mechanisms underlying abnormal bone homeostasis in the absence of FVIII or FIX is needed to guide evidence-based approaches to the screening and treatment of the prevalent bone defects in hemophilia A and B.


Assuntos
Fator IX/genética , Fator VIII/genética , Hemofilia A/metabolismo , Hemofilia B/metabolismo , Fator de von Willebrand/genética , Animais , Testes de Coagulação Sanguínea , Osso e Ossos/metabolismo , Hemofilia A/genética , Hemofilia A/patologia , Hemofilia B/genética , Hemofilia B/patologia , Humanos , Interleucina-6/genética , Masculino , Camundongos , Camundongos Knockout , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteoporose/genética , Osteoporose/patologia , Fenótipo , Ligante RANK/genética , Fator de Transcrição Sp7/genética
9.
J Thromb Haemost ; 17(8): 1240-1246, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31148392

RESUMO

BACKGROUND: Following induced joint hemorrhage, hemophilia B results in the abnormal persistence of iron deposition, inflammation, and neovascularity of the synovial tissue, as well as deterioration of the bone articular surface and strength. Previously, we demonstrated that a factor IX (FIX) replacement protein with extended circulating FIX activity, glycoPEGylated FIX nonacog beta pegol (N9-GP), could improve synovial and osteochondral parameters in F9 knockout mice when administered after joint injury. OBJECTIVE: We explored the use of N9-GP prior to unilateral joint hemorrhage and compared to unmodified recombinant FIX (rFIX). METHODS: Pharmacodynamics, histology, and microcomputed tomography were used to assess the effects of prophylactic administration of glycoPEGylated FIX. RESULTS: In comparison to rFIX, N9-GP significantly improved soft tissue histological parameters, as well as bone outcome at 2 weeks post injury, while performing equally in reduction of blood present in the joint space assessed 1 day after injury. CONCLUSIONS: These results indicate that, in comparison to rFIX, the prophylactic use of extended half-life FIX provides superior protection from bleeding-induced joint damage, manifested by improved correction of histologic parameters.


Assuntos
Fator IX/metabolismo , Hemartrose/tratamento farmacológico , Hemofilia B/tratamento farmacológico , Hemostáticos/administração & dosagem , Articulações/efeitos dos fármacos , Polietilenoglicóis/administração & dosagem , Animais , Modelos Animais de Doenças , Esquema de Medicação , Fator IX/administração & dosagem , Fator IX/genética , Fator IX/farmacocinética , Meia-Vida , Hemartrose/diagnóstico por imagem , Hemartrose/genética , Hemartrose/metabolismo , Hemofilia B/genética , Hemofilia B/metabolismo , Hemostáticos/farmacocinética , Articulações/diagnóstico por imagem , Articulações/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polietilenoglicóis/farmacocinética , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacocinética
10.
Bone ; 127: 91-103, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31055118

RESUMO

Chronic kidney disease (CKD) is a common disease of aging and increases fracture risk over advanced age alone. Aging and CKD differently impair bone turnover and mineralization. We thus hypothesize that the loss of bone quality would be greatest with the combination of advanced age and CKD. We evaluated bone from young adult (6 mo.), middle-age (18 mo.), and old (24 mo.) male C57Bl/6 mice three months following either 5/6th nephrectomy, to induce CKD, or Sham procedures. CKD exacerbated losses of cortical and trabecular microarchitecture associated with aging. Aging and CKD each resulted in thinner, more porous cortices and fewer and thinner trabeculae. Bone material quality was also reduced with CKD, and these changes to bone material were distinct from those due to age. Aging reduced whole-bone flexural strength and modulus, micrometer-scale nanoindentation modulus, and nanometer-scale tissue and collagen strain (small-angle x-ray scattering [SAXS]. By contrast, CKD reduced work to fracture and variation in bone tissue modulus and composition (Raman spectroscopy), and increased percent collagen strain. The increased collagen strain burden was associated with loss of toughness in CKD. In addition, osteocyte lacunae became smaller, sparser, and more disordered with age for Sham mice, yet these age-related changes were not clearly observed in CKD. However, for CKD, larger lacunae positively correlated with increased serum phosphate levels, suggesting that osteocytes play a role in systemic mineral homeostasis. This work demonstrates that CKD reduces bone quality, including microarchitecture and bone material properties, and that loss of bone quality with age is compounded by CKD. These findings may help reconcile why bone mass does not consistently predict fracture in the CKD population, as well as why older individuals with CKD are at high risk of fragility.


Assuntos
Envelhecimento/patologia , Osso e Ossos/patologia , Insuficiência Renal Crônica/patologia , Animais , Fenômenos Biomecânicos , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/patologia , Colágeno/metabolismo , Osso Cortical/diagnóstico por imagem , Osso Cortical/patologia , Análise de Elementos Finitos , Imageamento Tridimensional , Masculino , Camundongos Endogâmicos C57BL , Osteócitos/patologia , Análise de Regressão , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/diagnóstico por imagem , Insuficiência Renal Crônica/urina , Reprodutibilidade dos Testes , Espalhamento a Baixo Ângulo , Tíbia/patologia , Difração de Raios X , Microtomografia por Raio-X
11.
Am J Pathol ; 189(4): 868-885, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30664861

RESUMO

Mitogen-activated protein kinases, including c-Jun NH2-terminal kinase (JNK), play an important role in the development and function of a large variety of tissues. The skeletal phenotype of JNK1 and JNK2 double-knockout (dKO) mice (JNK1fl/flCol2-Cre/JNK2-/-) and control genotypes were analyzed at different embryonic and postnatal stages. JNK1/2 dKO mice displayed a severe scoliotic phenotype beginning during development that was grossly apparent around weaning age. Alcian blue staining at embryonic day 17.5 showed abnormal fusion of the posterior spinal elements. In adult mice, fusion of vertebral bodies and of spinous and transverse processes was noted by micro-computed tomography, Alcian blue/Alizarin red staining, and histology. The long bones developed normally, and histologic sections of growth plate and articular cartilage revealed no significant abnormalities. Histologic sections of the vertebral column at embryonic days 15.5 and 17.5 revealed an abnormal organization of the annulus fibrosus in the dKOs, with chondrocyte-like cells and fusion of dorsal processes. Spinal sections in 10-week-old dKO mice showed replacement of intervertebral disk structures (annulus fibrosus and nucleus pulposus) by cartilage and bone tissues, with cells staining for markers of hypertrophic chondrocytes, including collagen X and runt-related transcription factor 2. These findings demonstrate a requirement for both JNK1 and JNK2 in the normal development of the axial skeleton. Loss of JNK signaling results in abnormal endochondral bone formation and subsequent severe scoliosis.


Assuntos
Anel Fibroso/patologia , Vértebras Cervicais/patologia , Disco Intervertebral/patologia , Proteína Quinase 8 Ativada por Mitógeno/fisiologia , Proteína Quinase 9 Ativada por Mitógeno/fisiologia , Escoliose/etiologia , Fusão Vertebral , Animais , Anel Fibroso/enzimologia , Diferenciação Celular , Proliferação de Células , Vértebras Cervicais/enzimologia , Condrogênese , Feminino , Disco Intervertebral/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fosforilação , Escoliose/enzimologia , Escoliose/patologia
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1763-1766, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440736

RESUMO

As the duration of manned missions outside of the Earth's protective shielding increase, astronauts are at risk for exposure to space radiation. Various organ systems may be damaged due to exposure. This study investigates the bone strength changes using finite element modeling of Long Evans rats (n=85) subjected to graded, head-only proton (0, 10, 25, and 100 cGy, 150 MeV/n) and 28silicon (0, 10, 25, and 50 cGy, 300 MeV/n) radiation. The strength of the femoral neck will be examined due its clinical relevance to hip fractures. It has been shown in previous studies that bone mineral density was not reduced at the site of fracture. These findings question whether measurements of bone mineral density may be used to assess risk of hip fracture. The mechanisms leading to the irregular relationship between bone density and strength are still uncertain within literature and investigated to greater extent in clinical applications. Finite element analysis within this study simulated physiological loading of the femoral neck. No significant changes in femoral neck strength were found across doses of proton or 28silicon head-only radiation. Future work includes performing mechanical testing of the bone samples. Moving from mouse to larger animal models may also provide the increased lifespan for assessing the long-term outcomes of radiation exposure.


Assuntos
Radiação de Fundo , Densidade Óssea , Colo do Fêmur , Análise de Elementos Finitos , Modelos Biológicos , Animais , Densidade Óssea/efeitos da radiação , Colo do Fêmur/efeitos da radiação , Fraturas do Quadril , Camundongos , Ratos , Ratos Long-Evans
13.
Blood ; 129(15): 2161-2171, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28039188

RESUMO

Wound healing requires interactions between coagulation, inflammation, angiogenesis, cellular migration, and proliferation. Healing in dermal wounds of hemophilia B mice is delayed when compared with hemostatically normal wild-type (WT) mice, with abnormal persistence of iron deposition, inflammation, and neovascularity. We observed healing following induced joint hemorrhage in WT and factor IX (FIX) knockout (FIX-/-) mice, examining also parameters previously studied in an excisional skin wound model. Hemostatically normal mice tolerated this joint bleeding challenge, cleared blood from the joint, and healed with minimal pathology, even if additional autologous blood was injected intra-articularly at the time of wounding. Following hemarthrosis, joint wound healing in hemophilia B mice was impaired and demonstrated similar abnormal histologic features as previously described in hemophilic dermal wounds. Therefore, studies of pathophysiology and therapy of hemophilic joint bleeding performed in hemostatically normal animals are not likely to accurately reflect the healing defect of hemophilia. We additionally explored the hypothesis that the use of a FIX replacement protein with extended circulating FIX activity could improve synovial and osteochondral wound healing in hemophilic mice, when compared with treatment with unmodified recombinant FIX (rFIX) in the established joint bleeding model. Significantly improved synovial wound healing and preservation of normal osteochondral architecture are achieved by extending FIX activity after hemarthrosis using glycoPEGylated FIX when compared with an equivalent dose of rFIX. These results suggest that treating joint bleeding only until hemostasis is achieved may not result in optimal joint healing, which is improved by extending factor activity.


Assuntos
Fator IX , Hemartrose , Hemofilia B , Articulações , Pele , Cicatrização , Animais , Modelos Animais de Doenças , Fator IX/genética , Fator IX/farmacologia , Hemartrose/tratamento farmacológico , Hemartrose/genética , Hemartrose/metabolismo , Hemofilia B/tratamento farmacológico , Hemofilia B/genética , Hemofilia B/metabolismo , Articulações/lesões , Articulações/metabolismo , Camundongos , Camundongos Knockout , Pele/lesões , Pele/metabolismo , Cicatrização/efeitos dos fármacos , Cicatrização/genética
14.
Cell Rep ; 17(11): 3077-3088, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27974218

RESUMO

The NLRP3 inflammasome plays a critical role in host defense by facilitating caspase I activation and maturation of IL-1ß and IL-18, whereas dysregulation of inflammasome activity results in autoinflammatory disease. Factors regulating human NLRP3 activity that contribute to the phenotypic heterogeneity of NLRP3-related diseases have largely been inferred from the study of Nlrp3 mutant mice. By generating a mouse line in which the NLRP3 locus is humanized by syntenic replacement, we show the functioning of the human NLRP3 proteins in vivo, demonstrating the ability of the human inflammasome to orchestrate immune reactions in response to innate stimuli. Humanized mice expressing disease-associated mutations develop normally but display acute sensitivity to endotoxin and develop progressive and debilitating arthritis characterized by granulocytic infiltrates, elevated cytokines, erosion of bones, and osteoporosis. This NLRP3-dependent arthritis model provides a platform for testing therapeutic reagents targeting the human inflammasome.


Assuntos
Artropatias/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Osteoporose/genética , Animais , Modelos Animais de Doenças , Humanos , Inflamassomos/genética , Artropatias/patologia , Camundongos , Mutação , Osteoporose/patologia
15.
Bone ; 86: 1-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26860048

RESUMO

Chronic kidney disease (CKD) increases bone fracture risk. While the causes of bone fragility in CKD are not clear, the disrupted mineral homeostasis inherent to CKD may cause material quality changes to bone tissue. In this study, 11-week-old male C57Bl/6J mice underwent either 5/6th nephrectomy (5/6 Nx) or sham surgeries. Mice were fed a normal chow diet and euthanized 11weeks post-surgery. Moderate CKD with high bone turnover was established in the 5/6 Nx group as determined through serum chemistry and bone gene expression assays. We compared nanoindentation modulus and mineral volume fraction (assessed through quantitative backscattered scanning electron microscopy) at matched sites in arrays placed on the cortical bone of the tibia mid-diaphysis. Trabecular and cortical bone microarchitecture and whole bone strength were also evaluated. We found that moderate CKD minimally affected bone microarchitecture and did not influence whole bone strength. Meanwhile, bone material quality decreased with CKD; a pattern of altered tissue maturation was observed with 5/6 Nx whereby the newest 60µm of bone tissue adjacent to the periosteal surface had lower indentation modulus and mineral volume fraction than more interior, older bone. The variance of modulus and mineral volume fraction was also altered following 5/6 Nx, implying that tissue-scale heterogeneity may be negatively affected by CKD. The observed lower bone material quality may play a role in the decreased fracture resistance that is clinically associated with human CKD.


Assuntos
Osso e Ossos/patologia , Insuficiência Renal Crônica/patologia , Animais , Fenômenos Biomecânicos , Densidade Óssea , Matriz Óssea/patologia , Osso e Ossos/fisiopatologia , Calcificação Fisiológica/genética , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/patologia , Osso Esponjoso/fisiopatologia , Osso Cortical/diagnóstico por imagem , Osso Cortical/patologia , Fraturas do Colo Femoral/diagnóstico por imagem , Fraturas do Colo Femoral/patologia , Fraturas do Colo Femoral/fisiopatologia , Fêmur/diagnóstico por imagem , Fêmur/patologia , Fêmur/fisiopatologia , Testes de Função Renal , Masculino , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica/diagnóstico por imagem , Insuficiência Renal Crônica/fisiopatologia , Tíbia/patologia , Tíbia/fisiopatologia
16.
Bone ; 81: 562-572, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26318907

RESUMO

Bone loss associated with microgravity exposure poses a significant barrier to long-duration spaceflight. Osteoprotegerin-Fc (OPG-Fc) is a receptor activator of nuclear factor kappa-B ligand (RANKL) inhibitor that causes sustained inhibition of bone resorption after a single subcutaneous injection. We tested the ability of OPG-Fc to preserve bone mass during 12 days of spaceflight (SF). 64-day-old female C57BL/6J mice (n=12/group) were injected subcutaneously with OPG-Fc (20mg/kg) or an inert vehicle (VEH), 24h prior to launch. Ground control (GC) mice (VEH or OPG-Fc) were maintained under environmental conditions that mimicked those in the space shuttle middeck. Age-matched baseline (BL) controls were sacrificed at launch. GC/VEH, but not SF/VEH mice, gained tibia BMD and trabecular volume fraction (BV/TV) during the mission (P<0.05 vs. BL). SF/VEH mice had lower BV/TV vs. GC/VEH mice, while SF/OPG-Fc mice had greater BV/TV than SF/VEH or GC/VEH. SF reduced femur elastic and maximum strength in VEH mice, with OPG-Fc increasing elastic strength in SF mice. Serum TRAP5b was elevated in SF/VEH mice vs. GC/VEH mice. Conversely, SF/OPG-Fc mice had lower TRAP5b levels, suggesting that OPG-Fc preserved bone during spaceflight via inhibition of osteoclast-mediated bone resorption. Decreased bone formation also contributed to the observed osteopenia, based on the reduced femur periosteal bone formation rate and serum osteocalcin level. Overall, these observations suggest that the beneficial effects of OPG-Fc during SF are primarily due to dramatic and sustained suppression of bone resorption. In growing mice, this effect appears to compensate for the SF-related inhibition of bone formation, while preventing any SF-related increase in bone resorption. We have demonstrated that the young mouse is an appropriate new model for SF-induced osteopenia, and that a single pre-flight treatment with OPG-Fc can effectively prevent the deleterious effects of SF on mouse bone.


Assuntos
Reabsorção Óssea/prevenção & controle , Fragmentos Fc das Imunoglobulinas/farmacologia , Osteoprotegerina/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Voo Espacial , Ausência de Peso/efeitos adversos , Fosfatase Alcalina/sangue , Animais , Biomarcadores/sangue , Fenômenos Biomecânicos , Densidade Óssea/efeitos dos fármacos , Conservadores da Densidade Óssea/farmacologia , Reabsorção Óssea/etiologia , Reabsorção Óssea/fisiopatologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Osteocalcina/sangue , Ligante RANK/antagonistas & inibidores
17.
Bone ; 46(1): 101-11, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19747571

RESUMO

INTRODUCTION: Irradiation of normal, non-malignant bone during cancer therapy can lead to atrophy and increased risk of fracture at several skeletal sites, particularly the hip. This bone loss has been largely attributed to damaged osteoblasts. Little attention has been given to increased bone resorption as a contributor to radiation-induced osteoporosis. Our aims were to identify if radiation increases bone resorption resulting in acute bone loss and if bone loss could be prevented by administering risedronate. METHODS: Twenty-week-old female C57BL/6 mice were either: not irradiated and treated with placebo (NR+PL); whole-body irradiated with 2 Gy x-rays and treated with placebo (IR+PL); or irradiated and treated with risedronate (IR+RIS; 30 microg/kg every other day). Calcein injections were administered 7 and 2 days before sacrifice. Bones were collected 1, 2, and 3 weeks after exposure. MicroCT analysis was performed at 3 sites: proximal tibial metaphysis, distal femoral metaphysis, and the body of the 5th lumbar vertebra (L5). Osteoclasts were identified from TRAP-stained histological sections. Dynamic histomorphometry of cortical and trabecular bone was performed. Circulating TRAP5b and osteocalcin concentrations were quantified. RESULTS: In animals receiving IR+PL, significant (P<0.05) reduction in trabecular volume fraction relative to non-irradiated controls was observed at all three skeletal sites and time points. Likewise, radiation-induced loss of connectivity and trabecular number relative to NR+PL were observed at all skeletal sites throughout the study. Bone loss primarily occurred during the first week post-exposure. Trabecular and endocortical bone formation was not reduced until week 2. Loss of bone volume was absent in animals receiving IR+RIS. Histology indicated greater osteoclast numbers at week 1 within IR+PL mice. Serum TRAP5b concentration was increased in IR+PL mice only at week 1 compared to NR+PL (P=0.05). Risedronate treatment prevented the radiation-induced increase in osteoclast number, surface, and TRAP5b. CONCLUSIONS: This study demonstrated a rapid loss of trabecular bone at several skeletal sites after whole-body irradiation. Changes were accompanied by an increase in osteoclast number and serum markers of bone loss. Risedronate entirely prevented bone loss, providing further evidence that an increase in bone resorption likely caused this radiation-induced bone loss.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/efeitos da radiação , Ácido Etidrônico/análogos & derivados , Osteoporose/etiologia , Osteoporose/prevenção & controle , Irradiação Corporal Total/efeitos adversos , Animais , Osso e Ossos/patologia , Ácido Etidrônico/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Osteoporose/radioterapia , Ácido Risedrônico , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...