Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
AMIA Annu Symp Proc ; 2022: 512-521, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37128461

RESUMO

A hospital readmission risk prediction tool for patients with diabetes based on electronic health record (EHR) data is needed. The optimal modeling approach, however, is unclear. In 2,836,569 encounters of 36,641 diabetes patients, deep learning (DL) long short-term memory (LSTM) models predicting unplanned, all-cause, 30-day readmission were developed and compared to several traditional models. Models used EHR data defined by a Common Data Model. The LSTM model Area Under the Receiver Operating Characteristic Curve (AUROC) was significantly greater than that of the next best traditional model [LSTM 0.79 vs Random Forest (RF) 0.72, p<0.0001]. Experiments showed that performance of the LSTM models increased as prior encounter number increased up to 30 encounters. An LSTM model with 16 selected laboratory tests yielded equivalent performance to a model with all 981 laboratory tests. This new DL model may provide the basis for a more useful readmission risk prediction tool for diabetes patients.


Assuntos
Aprendizado Profundo , Diabetes Mellitus , Humanos , Readmissão do Paciente , Memória de Curto Prazo , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA