Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718223

RESUMO

BACKGROUND: COVID-19 remains a global public health challenge due to new immune-evasive SARS-CoV-2 variants and heterogeneous immunity. METHODS: In this cross-sectional study, we evaluated the adaptive immune responses in U.S. active-duty personnel who completed a COVID-19 primary vaccine series and with heterogenous SARS-CoV-2 vaccination and infection histories to 3 previously dominant variants (Ancestral, Delta, BA.5) and 3 circulating variants (XBB.1.5, EG.5, and BA.2.86) in late 2023. Analyses were performed based upon timing (within or beyond 12 months) and type (vaccine or infection) of the most recent exposure. RESULTS: Significant reduction was observed in binding antibodies, neutralization antibodies, memory B cells, and CD8+ T cells against circulating variants compared to previous variants. The reduction in antibody response was more pronounced in those whose most recent exposure was greater than 12 months from enrollment. In contrast, the CD4+ T cell response was largely consistent across all tested variants. The type of most recent exposure was not a significant factor in determining the magnitude of current immune responses. CONCLUSIONS: Administration of the XBB.1.5-based booster is likely to enhance cross-reactive humoral responses against SARS-CoV-2 circulating lineages. Ongoing surveillance of immune responses to emerging variants is needed for informing vaccine composition and timing.

2.
Cell Rep Methods ; 3(2): 100395, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36936082

RESUMO

Assays detecting blood transcriptome changes are studied for infectious disease diagnosis. Blood-based RNA alternative splicing (AS) events, which have not been well characterized in pathogen infection, have potential normalization and assay platform stability advantages over gene expression for diagnosis. Here, we present a computational framework for developing AS diagnostic biomarkers. Leveraging a large prospective cohort of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and whole-blood RNA sequencing (RNA-seq) data, we identify a major functional AS program switch upon viral infection. Using an independent cohort, we demonstrate the improved accuracy of AS biomarkers for SARS-CoV-2 diagnosis compared with six reported transcriptome signatures. We then optimize a subset of AS-based biomarkers to develop microfluidic PCR diagnostic assays. This assay achieves nearly perfect test accuracy (61/62 = 98.4%) using a naive principal component classifier, significantly more accurate than a gene expression PCR assay in the same cohort. Therefore, our RNA splicing computational framework enables a promising avenue for host-response diagnosis of infection.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Processamento Alternativo/genética , Teste para COVID-19 , RNA , Estudos Prospectivos , Biomarcadores/análise
3.
Sci Rep ; 12(1): 19845, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400806

RESUMO

Peru was the first country where pfhrp2 and pfhrp3 gene deletions were detected despite the fact that rapid diagnostics tests are not commonly used for confirmatory malaria diagnosis. This context provides a unique scenario to study the dynamics of pfhrp2 and pfhrp3 gene deletions without apparent RDTs selection pressure. In this study we characterized the presence of pfhrp2 and pfhrp3 genes on 325 P. falciparum samples collected in Iquitos and surrounding communities between 2011 and 2018 in order to understand the dynamics of gene deletion prevalence, potential associations with clinical symptomatology and parasite genetic background. P. falciparum presence was confirmed by microscopy and PCR of 18 s rRNA, pfmsp1 and pfmsp2. Gene deletions were assessed by amplification of exon1 and exon2 of pfhrp2 and pfhrp3 using gene specific PCRs. Confirmation of absence of HRP2 expression was assessed by ELISA of HRP2 and pLDH. Genotyping of 254 samples were performed using a panel of seven neutral microsatellite markers. Overall, pfhrp2 and pfhrp3 dual gene deletions were detected in 67% (217/324) parasite samples. Concordance between pfhrp2 deletion and negligible HRP2 protein levels was observed (Cohen's Kappa = 0.842). Prevalence of gene deletions was heterogeneous across study sites (adjusted p < 0.005) but there is an overall tendency towards increase through time in the prevalence of dual pfhrp2/3-deleted parasites between 2011 (14.3%) and 2016 (88.39%) stabilizing around 65% in 2018. Dual deletions increase was associated with dominance of a single new parasite haplotype (H8) which rapidly spread to all study sites during the 8 study years. Interestingly, participants infected with dual pfhrp2/3-deleted parasites had a significantly lower parasitemias than those without gene deletions in this cohort. Our study showed the increase of pfhrp2/3 deletions in the absence of RDTs pressure and a clonal replacement of circulating lines in the Peruvian Amazon basin. These results suggest that other factors linked to the pfhrp2/3 deletion provide a selective advantage over non-deleted strains and highlight the need for additional studies and continuing surveillance.


Assuntos
Malária Falciparum , Plasmodium falciparum , Humanos , Plasmodium falciparum/genética , Peru/epidemiologia , Histidina/genética , Deleção de Genes , Malária Falciparum/parasitologia
4.
Microbiol Spectr ; 10(6): e0183722, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36374040

RESUMO

We investigated the temporal profile of multiple components of the serological response after asymptomatic or mildly symptomatic SARS-CoV-2 infection, in a cohort of 67 previously SARS-CoV-2 naive young adults, up to 8.5 months after infection. We found a significant decrease of spike IgG and neutralization antibody titers from early (11 to 56 days) to late (4 to 8.5 months) time points postinfection. Over the study period, S1-specific IgG levels declined significantly faster than that of the S2-specific IgG. Further, serum antibodies from PCR-confirmed participants cross-recognized S2, but not S1, of the betacoronaviruses HKU1 and OC43, suggesting a greater degree of cross-reactivity of S2 among betacoronaviruses. Antibody-Dependent Natural Killer cell Activation (ADNKA) was detected at the early time point but significantly decreased at the late time point. Induction of serum Antibody-Dependent Monocyte Phagocytosis (ADMP) was detected in all the infected participants, and its levels remained stable over time. Additionally, a reduced percentage of participants had detectable neutralizing activity against the Beta (50%), Gamma (61 to 67%), and Delta (90 to 94%) variants, both early and late postinfection, compared to the ancestral strain (100%). Antibody binding to S1 and RBD of Beta, Gamma, Delta (1.7 to 2.3-fold decrease), and Omicron (10 to 16-fold decrease) variants was also significantly reduced compared to the ancestral SARS-CoV-2 strain. Overall, we found variable temporal profiles of specific components and functionality of the serological response to SARS-CoV-2 in young adults, which is characterized by lasting, but decreased, neutralizing activity and antibody binding to S1, stable ADMP activity, and relatively stable S2-specific IgG levels. IMPORTANCE Adaptive immunity mediated by antibodies is important for controlling SARS-CoV-2 infection. While vaccines against COVID-19 are currently widely distributed, a high proportion of the global population is still unvaccinated. Therefore, understanding the dynamics and maintenance of the naive humoral immune response to SARS-CoV-2 is of great importance. In addition, long-term responses after asymptomatic infection are not well-characterized, given the challenges in identifying such cases. Here, we investigated the longitudinal humoral profile in a well-characterized cohort of young adults with documented asymptomatic or mildly symptomatic SARS-CoV-2 infection. By analyzing samples collected preinfection, early after infection and during late convalescence, we found that, while neutralizing activity decreased over time, high levels of serum S2 IgG and Antibody-Dependent Monocyte Phagocytosis (ADMP) activity were maintained up to 8.5 months after infection. This suggests that a subset of antibodies with specific functions could contribute to long-term protection against SARS-CoV-2 in convalescent unvaccinated individuals.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto Jovem , Humanos , Vacinas contra COVID-19 , Monócitos , Imunoglobulina G , Anticorpos Antivirais , Anticorpos Neutralizantes
5.
Cell Syst ; 13(11): 924-931.e4, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36323307

RESUMO

Male sex is a major risk factor for SARS-CoV-2 infection severity. To understand the basis for this sex difference, we studied SARS-CoV-2 infection in a young adult cohort of United States Marine recruits. Among 2,641 male and 244 female unvaccinated and seronegative recruits studied longitudinally, SARS-CoV-2 infections occurred in 1,033 males and 137 females. We identified sex differences in symptoms, viral load, blood transcriptome, RNA splicing, and proteomic signatures. Females had higher pre-infection expression of antiviral interferon-stimulated gene (ISG) programs. Causal mediation analysis implicated ISG differences in number of symptoms, levels of ISGs, and differential splicing of CD45 lymphocyte phosphatase during infection. Our results indicate that the antiviral innate immunity set point causally contributes to sex differences in response to SARS-CoV-2 infection. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
COVID-19 , Imunidade Inata , Caracteres Sexuais , Feminino , Humanos , Masculino , Adulto Jovem , COVID-19/imunologia , Interferons , Proteômica , SARS-CoV-2
6.
Sci Rep ; 12(1): 16474, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182962

RESUMO

Malaria is a major health problem in Peru despite substantial progress achieved by the ongoing malaria elimination program. This study explored the population genetics of 63 Plasmodium falciparum and 170 P. vivax cases collected in the Peruvian Amazon Basin between 2015 and 2019. Microscopy and PCR were used for malaria detection and positive samples were genotyped at neutral and drug resistance-associated regions. The P. falciparum population exhibited a low nucleotide diversity (π = 0.02) whereas the P. vivax population presented a higher genetic diversity (π = 0.34). All P. falciparum samples (n = 63) carried chloroquine (CQ) resistant mutations on Pfcrt. Most P. falciparum samples (53 out of 54) carried sulfadoxine (SD) resistant mutations on Pfdhfr and Pfdhps. No evidence was found of artemisinin resistance mutations on kelch13. Population structure showed that a single cluster accounted for 93.4% of the P. falciparum samples whereas three clusters were found for P. vivax. Our study shows a low genetic diversity for both species with significant differences in genetic sub-structuring. The high prevalence of CQ-resistance mutations could be a result of indirect selection pressures driven by the P. vivax treatment scheme. These results could be useful for public health authorities to safeguard the progress that Peru has achieved towards malaria elimination.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária Vivax , Malária , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Resistência a Medicamentos/genética , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Vivax/tratamento farmacológico , Malária Vivax/epidemiologia , Nucleotídeos/uso terapêutico , Peru/epidemiologia , Plasmodium falciparum/genética , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Sulfadoxina/uso terapêutico
7.
Epidemiology ; 33(6): 797-807, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35944149

RESUMO

BACKGROUND: Marine recruits training at Parris Island experienced an unexpectedly high rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, despite preventive measures including a supervised, 2-week, pre-entry quarantine. We characterize SARS-CoV-2 transmission in this cohort. METHODS: Between May and November 2020, we monitored 2,469 unvaccinated, mostly male, Marine recruits prospectively during basic training. If participants tested negative for SARS-CoV-2 by quantitative polymerase chain reaction (qPCR) at the end of quarantine, they were transferred to the training site in segregated companies and underwent biweekly testing for 6 weeks. We assessed the effects of coronavirus disease 2019 (COVID-19) prevention measures on other respiratory infections with passive surveillance data, performed phylogenetic analysis, and modeled transmission dynamics and testing regimens. RESULTS: Preventive measures were associated with drastically lower rates of other respiratory illnesses. However, among the trainees, 1,107 (44.8%) tested SARS-CoV-2-positive, with either mild or no symptoms. Phylogenetic analysis of viral genomes from 580 participants revealed that all cases but one were linked to five independent introductions, each characterized by accumulation of mutations across and within companies, and similar viral isolates in individuals from the same company. Variation in company transmission rates (mean reproduction number R 0 ; 5.5 [95% confidence interval [CI], 5.0, 6.1]) could be accounted for by multiple initial cases within a company and superspreader events. Simulations indicate that frequent rapid-report testing with case isolation may minimize outbreaks. CONCLUSIONS: Transmission of wild-type SARS-CoV-2 among Marine recruits was approximately twice that seen in the community. Insights from SARS-CoV-2 outbreak dynamics and mutations spread in a remote, congregate setting may inform effective mitigation strategies.


Assuntos
COVID-19 , Surtos de Doenças , Militares , COVID-19/epidemiologia , COVID-19/prevenção & controle , Surtos de Doenças/prevenção & controle , Feminino , Humanos , Masculino , Militares/estatística & dados numéricos , Filogenia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Estados Unidos/epidemiologia
8.
PLoS One ; 17(4): e0266691, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35390102

RESUMO

SARS-CoV-2 T cell responses are associated with COVID-19 recovery, and Class I- and Class II-restricted epitopes have been identified in the spike (S), nucleocapsid (N) and membrane (M) proteins and others. This prospective COVID-19 Health Action Response for Marines (CHARM) study enabled assessment of T cell responses against S, N and M proteins in symptomatic and asymptomatic SARS-CoV-2 infected participants. At enrollment all participants were negative by qPCR; follow-up occurred biweekly and bimonthly for the next 6 weeks. Study participants who tested positive by qPCR SARS-CoV-2 test were enrolled in an immune response sub-study. FluoroSpot interferon-gamma (IFN-γ) and IL2 responses following qPCR-confirmed infection at enrollment (day 0), day 7 and 14 and more than 28 days later were measured using pools of 17mer peptides covering S, N, and M proteins, or CD4+CD8 peptide pools containing predicted epitopes from multiple SARS-CoV-2 antigens. Among 124 asymptomatic and 105 symptomatic participants, SARS-CoV-2 infection generated IFN-γ responses to the S, N and M proteins that persisted longer in asymptomatic cases. IFN-γ responses were significantly (p = 0.001) more frequent to the N pool (51.4%) than the M pool (18.9%) among asymptomatic but not symptomatic subjects. Asymptomatic IFN-γ responders to the CD4+CD8 pool responded more frequently to the S pool (55.6%) and N pool (57.1%), than the M pool (7.1%), but not symptomatic participants. The frequencies of IFN-γ responses to the S and N+M pools peaked 7 days after the positive qPCR test among asymptomatic (S pool: 22.2%; N+M pool: 28.7%) and symptomatic (S pool: 15.3%; N+M pool 21.9%) participants and dropped by >28 days. Magnitudes of post-infection IFN-γ and IL2 responses to the N+M pool were significantly correlated with IFN-γ and IL2 responses to the N and M pools. These data further support the central role of Th1-biased cell mediated immunity IFN-γ and IL2 responses, particularly to the N protein, in controlling COVID-19 symptoms, and justify T cell-based COVID-19 vaccines that include the N and S proteins.


Assuntos
COVID-19 , Interferon gama , Interleucina-2 , Anticorpos Antivirais , Infecções Assintomáticas , Linfócitos T CD8-Positivos , COVID-19/diagnóstico , COVID-19/imunologia , Vacinas contra COVID-19 , Epitopos , Humanos , Interferon gama/imunologia , Interleucina-2/imunologia , Militares , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
9.
PLoS One ; 16(10): e0258722, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34695122

RESUMO

Malaria elimination efforts in Peru have dramatically reduced the incidence of cases in the Amazon Basin. To achieve the elimination, the detection of asymptomatic and submicroscopic carriers becomes a priority. Therefore, efforts should focus on tests sensitive enough to detect low-density parasitemia, deployable to resource-limited areas and affordable for large screening purposes. In this study, we assessed the performance of the Malachite-Green LAMP (MG-LAMP) using heat-treated DNA extraction (Boil & Spin; B&S MG-LAMP) on 283 whole blood samples collected from 9 different sites in Loreto, Peru and compared its performance to expert and field microscopy. A real-time PCR assay was used to quantify the parasite density. In addition, we explored a modified version of the B&S MG-LAMP for detection of submicroscopic infection in 500 samples and compared the turnaround time and cost of the MG-LAMP with microscopy. Compared to expert microscopy, the genus B&S MG-LAMP had a sensitivity of 99.4% (95%CI: 96.9%- 100%) and specificity of 97.1% (95%CI: 91.9%- 99.4%). The P. vivax specific B&S MG-LAMP had a sensitivity of 99.4% (96.6%- 100%) and specificity of 99.2% (95.5%- 100%) and the P. falciparum assay had a sensitivity of 100% (95%CI: 78.2%- 100%) and specificity of 99.3% (95%CI: 97.3%- 99.8%). The modified genus B&S MG-LAMP assay detected eight submicroscopic malaria cases (1.6%) which the species-specific assays did not identify. The turnaround time of B&S MG-LAMP was faster than expert microscopy with as many as 60 samples being processed per day by field technicians with limited training and utilizing a simple heat-block. The modified B&S MG-LAMP offers a simple and sensitive molecular test of choice for the detection of submicroscopic infections that can be used for mass screening in resources limited facilities in endemic settings nearing elimination and where a deployable test is required.


Assuntos
Malária Falciparum/diagnóstico , Microscopia/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Plasmodium falciparum/isolamento & purificação , Corantes de Rosanilina/química , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Peru/epidemiologia
10.
Sci Rep ; 11(1): 21212, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707204

RESUMO

Previous studies have shown that P. falciparum parasites in South America have undergone population bottlenecks resulting in clonal lineages that are differentially distributed and that have been responsible for several outbreaks different endemic regions. In this study, we explored the genomic profile of 18 P. falciparum samples collected in the Peruvian Amazon Basin (Loreto) and 6 from the Peruvian North Coast (Tumbes). Our results showed the presence of three subpopulations that matched previously typed lineages in Peru: Bv1 (n = 17), Clonet D (n = 4) and Acre-Loreto type (n = 3). Gene coverage analysis showed that none of the Bv1 samples presented coverage for pfhrp2 and pfhrp3. Genotyping of drug resistance markers showed a high prevalence of Chloroquine resistance mutations S1034C/N1042D/D1246Y in pfmdr1 (62.5%) and K45T in pfcrt (87.5%). Mutations associated with sulfadoxine and pyrimethamine treatment failure were found on 88.8% of the Bv1 samples which were triple mutants for pfdhfr (50R/51I/108N) and pfdhps (437G/540E/581G). Analysis of the pfS47 gene that allows P. falciparum to evade mosquito immune responses showed that the Bv1 lineage presented one pfS47 haplotype exclusive to Loreto and another haplotype that was present in both Loreto and Tumbes. Furthermore, a possible expansion of Bv1 was detected since 2011 in Loreto. This replacement could be a result of the high prevalence of CQ resistance polymorphisms in Bv1, which could have provided a selective advantage to the indirect selection pressures driven by the use of CQ for P. vivax treatment.


Assuntos
Evolução Molecular , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Antiprotozoários/toxicidade , Cloroquina/toxicidade , Resistência a Medicamentos/genética , Frequência do Gene , Genoma de Protozoário , Mosquitos Vetores/parasitologia , Peru , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Pirimetamina/toxicidade , Sulfadoxina/toxicidade
12.
Lancet Respir Med ; 9(7): 712-720, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33865504

RESUMO

BACKGROUND: Whether young adults who are infected with SARS-CoV-2 are at risk of subsequent infection is uncertain. We investigated the risk of subsequent SARS-CoV-2 infection among young adults seropositive for a previous infection. METHODS: This analysis was performed as part of the prospective COVID-19 Health Action Response for Marines study (CHARM). CHARM included predominantly male US Marine recruits, aged 18-20 years, following a 2-week unsupervised quarantine at home. After the home quarantine period, upon arrival at a Marine-supervised 2-week quarantine facility (college campus or hotel), participants were enrolled and were assessed for baseline SARS-CoV-2 IgG seropositivity, defined as a dilution of 1:150 or more on receptor-binding domain and full-length spike protein ELISA. Participants also completed a questionnaire consisting of demographic information, risk factors, reporting of 14 specific COVID-19-related symptoms or any other unspecified symptom, and brief medical history. SARS-CoV-2 infection was assessed by PCR at weeks 0, 1, and 2 of quarantine and participants completed a follow-up questionnaire, which included questions about the same COVID-19-related symptoms since the last study visit. Participants were excluded at this stage if they had a positive PCR test during quarantine. Participants who had three negative swab PCR results during quarantine and a baseline serum serology test at the beginning of the supervised quarantine that identified them as seronegative or seropositive for SARS-CoV-2 then went on to basic training at Marine Corps Recruit Depot-Parris Island. Three PCR tests were done at weeks 2, 4, and 6 in both seropositive and seronegative groups, along with the follow-up symptom questionnaire and baseline neutralising antibody titres on all subsequently infected seropositive and selected seropositive uninfected participants (prospective study period). FINDINGS: Between May 11, 2020, and Nov 2, 2020, we enrolled 3249 participants, of whom 3168 (98%) continued into the 2-week quarantine period. 3076 (95%) participants, 2825 (92%) of whom were men, were then followed up during the prospective study period after quarantine for 6 weeks. Among 189 seropositive participants, 19 (10%) had at least one positive PCR test for SARS-CoV-2 during the 6-week follow-up (1·1 cases per person-year). In contrast, 1079 (48%) of 2247 seronegative participants tested positive (6·2 cases per person-year). The incidence rate ratio was 0·18 (95% CI 0·11-0·28; p<0·001). Among seropositive recruits, infection was more likely with lower baseline full-length spike protein IgG titres than in those with higher baseline full-length spike protein IgG titres (hazard ratio 0·45 [95% CI 0·32-0·65]; p<0·001). Infected seropositive participants had viral loads that were about 10-times lower than those of infected seronegative participants (ORF1ab gene cycle threshold difference 3·95 [95% CI 1·23-6·67]; p=0·004). Among seropositive participants, baseline neutralising titres were detected in 45 (83%) of 54 uninfected and in six (32%) of 19 infected participants during the 6 weeks of observation (ID50 difference p<0·0001). INTERPRETATION: Seropositive young adults had about one-fifth the risk of subsequent infection compared with seronegative individuals. Although antibodies induced by initial infection are largely protective, they do not guarantee effective SARS-CoV-2 neutralisation activity or immunity against subsequent infection. These findings might be relevant for optimisation of mass vaccination strategies. FUNDING: Defense Health Agency and Defense Advanced Research Projects Agency.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/sangue , COVID-19/epidemiologia , SARS-CoV-2/imunologia , Adolescente , COVID-19/diagnóstico , Teste Sorológico para COVID-19 , Estudos de Coortes , Feminino , Humanos , Masculino , Estudos Prospectivos , Quarentena , Medição de Risco , Adulto Jovem
13.
Sci Rep ; 10(1): 20975, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262482

RESUMO

Malaria continues to be an important health problem in Honduras despite major progress achieved reducing its incidence in the last two decades. In a context of case reduction, continuing surveillance of parasite diversity and drug resistance is an important component to assist effective malaria control strategies and support risk assessments. In this study, we employed next generation sequencing on collected Plasmodium vivax and P. falciparum samples from the Hospital Escuela (University Hospital) in Honduras between 2005 and 2017. Hospital Escuela is the main public health hospital in Honduras and receives suspected malaria cases from endemic regions within the country. The resulting sequencing data was used to assess complexity of infections, parasite population structure, parasite diversity and drug resistance profiling. All P. vivax samples and all autochtonous P. falciparum samples were monoclonal and presented a low intra population diversity (π = 0.25 and 0.07, respectively). Genotyping of drug resistance markers showed that three P. falciparum samples presented the chloroquine resistant haplotype SVMNT on pfcrtr (positions 72-76). Epidemiological data suggested that two of these samples were imported cases from Africa whereas the third one was a local case. Three suspected imported cases (two of which were also pfcrt mutants) presented the pfmdr1 86Y mutation that further enhances the CQ resistant genotype. No evidence was found for kelch13 artemisinin resistance associated mutations nor parasite genetic background mutations. Discriminant analysis of principal components and phylogenetic analysis showed two P. vivax and two P. falciparum parasite sub-populations with limited recombination between them. It also confirmed the closer relationship of the three imported cases with African strains. Our findings showed that local Honduras P. falciparum strains do not hold CQ resistance polymorphisms which aligns with clinical data reported by the country and supports the continuity of CQ based treatment in Honduras. In addition, our findings highlight the need of using genomic approaches to provide key information about parasite biology including drug resistance, population structure and HRP2/HRP3 deletions which are becoming relevant as the country move towards elimination.


Assuntos
Genoma , Genômica , Plasmodium falciparum/genética , Plasmodium vivax/genética , Biodiversidade , Análise por Conglomerados , Resistência a Medicamentos/genética , Honduras , Hospitais Universitários , Humanos , Funções Verossimilhança , Malária Falciparum/parasitologia , Malária Vivax/parasitologia , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Manejo de Espécimes
14.
Int J Antimicrob Agents ; 42(1): 83-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23688520

RESUMO

The tet(X) gene encodes a flavin-dependent monooxygenase that confers resistance to all clinically relevant tetracycline antibiotics including tigecycline. It has only previously been identified in environmental and non-human pathogenic bacteria. To investigate levels of multidrug resistance in Bo, Sierra Leone, a molecular epidemiological study was conducted using an antimicrobial resistance determinant microarray (ARDM), PCR and DNA sequencing. The study found that 21% of isolates from Mercy Hospital (Bo, Sierra Leone) were tet(X)-positive, all of which originated from urinary specimens. Use of molecular epidemiological surveillance tools has provided the first evidence of tet(X)-containing multidrug-resistant Gram-negative hospital isolates in a hospital in Sierra Leone.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Infecções Bacterianas/microbiologia , Farmacorresistência Bacteriana Múltipla , Genes Bacterianos , Tetraciclinas/farmacologia , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Hospitais , Humanos , Análise em Microsséries , Epidemiologia Molecular , Reação em Cadeia da Polimerase , Serra Leoa
15.
J Clin Microbiol ; 51(7): 2435-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23658259

RESUMO

We describe the results of a molecular epidemiological survey of 15 carbapenemase-encoding genes from a recent collection of clinical isolates from Mercy Hospital in Bo, Sierra Leone. The most salient findings revealed that (i) 60% of the isolates harbored multiple carbapenemase genes; (ii) the blaDIM-1 gene, which has previously only been reported in The Netherlands, is also circulating in this environment; and (iii) blaOXA-51-like and blaOXA-58 genes, which were thought to reside exclusively in Acinetobacter species, can also be found in members of the Enterobacteriaceae.


Assuntos
Proteínas de Bactérias/genética , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/enzimologia , beta-Lactamases/genética , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Genótipo , Humanos , Epidemiologia Molecular , Dados de Sequência Molecular , Análise de Sequência de DNA , Serra Leoa/epidemiologia
16.
FEMS Microbiol Lett ; 327(1): 9-14, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22092702

RESUMO

Shewanella oneidensis MR-1 has conventionally been considered unable to use glucose as a carbon substrate for growth. The genome sequence of S. oneidensis MR-1 however suggests the ability to use glucose. Here, we demonstrate that during initial glucose exposure, S. oneidensis MR-1 quickly and frequently gains the ability to utilize glucose as a sole carbon source, in contrast to wild-type S. oneidensis, which cannot immediately use glucose as a sole carbon substrate. High-performance liquid chromatography and (14)C glucose tracer studies confirm the disappearance in cultures and assimilation and respiration, respectively, of glucose. The relatively short time frame with which S. oneidensis MR-1 gained the ability to use glucose raises interesting ecological implications.


Assuntos
Glucose/metabolismo , Mutação , Shewanella/genética , Shewanella/metabolismo , Shewanella/crescimento & desenvolvimento
17.
Bioresour Technol ; 102(1): 290-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20663660

RESUMO

Shewanella-containing microbial fuel cells (MFCs) typically use the fresh water wild-type strain Shewanella oneidensis MR-1 due to its metabolic diversity and facultative oxidant tolerance. However, S. oneidensis MR-1 is not capable of metabolizing polysaccharides for extracellular electron transfer. The applicability of Shewanella japonica (an agar-lytic Shewanella strain) for power applications was analyzed using a diverse array of carbon sources for current generation from MFCs, cellular physiological responses at an electrode surface, biofilm formation, and the presence of soluble extracellular mediators for electron transfer to carbon electrodes. Critically, air-exposed S. japonica utilizes biosynthesized extracellular mediators for electron transfer to carbon electrodes with sucrose as the sole carbon source.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Shewanella/fisiologia , Biofilmes/crescimento & desenvolvimento , Carbono/metabolismo , Eletricidade , Eletrodos/microbiologia , Transporte de Elétrons , Espaço Extracelular/metabolismo , Água Doce/microbiologia , Oxirredução , Shewanella/metabolismo , Solubilidade
18.
J Bacteriol ; 186(20): 6837-44, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15466037

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic lung infections in cystic fibrosis (CF) patients. One characteristic of P. aeruginosa CF isolates is the overproduction of the exopolysaccharide alginate, controlled by AlgR. Transcriptional profiling analyses comparing mucoid P. aeruginosa strains to their isogenic algR deletion strains showed that the transcription of cyanide-synthesizing genes (hcnAB) was approximately 3-fold lower in the algR mutants. S1 nuclease protection assays corroborated these findings, indicating that AlgR activates hcnA transcription in mucoid P. aeruginosa. Quantification of hydrogen cyanide (HCN) production from laboratory isolates revealed that mucoid laboratory strains made sevenfold more HCN than their nonmucoid parental strains. In addition, comparison of laboratory and clinically derived nonmucoid strains revealed that HCN was fivefold higher in the nonmucoid CF isolates. Moreover, the average amount of cyanide produced by mucoid clinical isolates was 4.7 +/- 0.85 micromol of HCN/mg of protein versus 2.4 +/- 0.40 micromol of HCN/mg of protein for nonmucoid strains from a survey conducted with 41 P. aeruginosa CF isolates from 24 patients. Our data indicate that (i) mucoid P. aeruginosa regardless of their origin (laboratory or clinically derived) produce more cyanide than their nonmucoid counterparts, (ii) AlgR regulates HCN production in P. aeruginosa, and (iii) P. aeruginosa CF isolates are more hypercyanogenic than nonmucoid laboratory strains. Taken together, cyanide production may be a relevant virulence factor in CF lung disease, the production of which is regulated, in part, by AlgR.


Assuntos
Proteínas de Bactérias/metabolismo , Fibrose Cística/microbiologia , Regulação Bacteriana da Expressão Gênica , Cianeto de Hidrogênio/metabolismo , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/patogenicidade , Transativadores/metabolismo , Proteínas de Bactérias/genética , Meios de Cultura , Humanos , Complexos Multienzimáticos/metabolismo , Oxirredutases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH2 , Regiões Promotoras Genéticas , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Transativadores/genética , Transcrição Gênica
19.
J Bacteriol ; 186(17): 5672-84, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15317771

RESUMO

The Pseudomonas aeruginosa transcriptional regulator AlgR controls a variety of different processes, including alginate production, type IV pilus function, and virulence, indicating that AlgR plays a pivotal role in the regulation of gene expression. In order to characterize the AlgR regulon, Pseudomonas Affymetrix GeneChips were used to generate the transcriptional profiles of (i) P. aeruginosa PAO1 versus its algR mutant in mid-logarithmic phase, (ii) P. aeruginosa PAO1 versus its algR mutant in stationary growth phase, and (iii) PAO1 versus PAO1 harboring an algR overexpression plasmid. Expression analysis revealed that, during mid-logarithmic growth, AlgR activated the expression of 58 genes while it repressed the expression of 37 others, while during stationary phase, it activated expression of 45 genes and repression of 14 genes. Confirmatory experiments were performed on two genes found to be AlgR repressed (hcnA and PA1557) and one AlgR-activated operon (fimU-pilVWXY1Y2). An S1 nuclease protection assay demonstrated that AlgR repressed both known hcnA promoters in PAO1. Additionally, direct measurement of hydrogen cyanide (HCN) production showed that P. aeruginosa PAO1 produced threefold-less HCN than did its algR deletion strain. AlgR also repressed transcription of two promoters of the uncharacterized open reading frame PA1557. Further, the twitching motility defect of an algR mutant was complemented by the fimTU-pilVWXY1Y2E operon, thus identifying the AlgR-controlled genes responsible for this defect in an algR mutant. This study identified four new roles for AlgR: (i) AlgR can repress gene transcription, (ii) AlgR activates the fimTU-pilVWXY1Y2E operon, (iii) AlgR regulates HCN production, and (iv) AlgR controls transcription of the putative cbb3-type cytochrome PA1557.


Assuntos
Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Regulon , Transativadores/genética , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Alginatos , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Deleção de Genes , Genes Bacterianos , Ácido Glucurônico/biossíntese , Ácido Glucurônico/genética , Ácidos Hexurônicos , Movimento/fisiologia , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Óperon/genética , Óperon/fisiologia , Oxirredutases/genética , Oxirredutases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH2 , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Transdução de Sinais , Endonucleases Específicas para DNA e RNA de Cadeia Simples/metabolismo , Transativadores/metabolismo , Virulência/genética
20.
Infect Immun ; 70(11): 6083-93, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12379685

RESUMO

Chronic Pseudomonas aeruginosa lung infection is the major cause of morbidity and mortality in cystic fibrosis (CF) patients. One P. aeruginosa virulence factor unique to CF isolates is overproduction of alginate, phenotypically termed mucoidy. Mucoidy is the result of increased transcription from the algD gene and is activated by the transcriptional regulator AlgR. Mutations in algR result in a nonmucoid phenotype and loss of twitching motility. Additionally, AlgR controls transcription of algC, encoding a dual-function enzyme necessary for both lipopolysaccharide (LPS) and alginate production. Therefore, to determine the effect of algR on P. aeruginosa virulence, an algR mutant was examined for sensitivity to reactive oxygen intermediates, killing by phagocytes, systemic virulence, and the ability to maintain a murine lung infection. We found that P. aeruginosa PAO700 (algR::Gm(r)) was less lethal than PAO1, as tested in an acute septicemia infection mouse model, and was cleared more efficiently in a mouse pneumonia model. Additionally, the algR mutant (PAO700) was more sensitive to hypochlorite. However, PAO700 was more resistant to hydrogen peroxide and killed less readily in an acellular myeloperoxidase assay than PAO1. There was little difference in killing between PAO1 and PAO700 with macrophage-like J774 cells and human polymorhonuclear leukocytes. Two-dimensional gel analysis of P. aeruginosa algR mutant and wild-type protein extracts revealed 47 differentially regulated proteins, suggesting that AlgR plays both a positive role and a negative role in gene expression. Together, these results imply that AlgR is necessary for virulence and regulates genes in addition to the genes associated with alginate and LPS production and pilus function.


Assuntos
Alginatos/metabolismo , Proteínas de Bactérias/fisiologia , Pseudomonas aeruginosa/patogenicidade , Transativadores , Animais , Bacteriemia/microbiologia , Feminino , Glucose Oxidase/farmacologia , Humanos , Ácido Hipocloroso/farmacologia , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Peroxidase/farmacologia , Fosfotransferases (Fosfomutases)/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transcrição Gênica , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...