Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell Rep Med ; 4(11): 101282, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37992688

RESUMO

Despite small cell lung cancers (SCLCs) having a high mutational burden, programmed death-ligand 1 (PD-L1) immunotherapy only modestly increases survival. A subset of SCLCs that lose their ASCL1 neuroendocrine phenotype and restore innate immune signaling (termed the "inflammatory" subtype) have durable responses to PD-L1. Some SCLCs are highly sensitive to Aurora kinase inhibitors, but early-phase trials show short-lived responses, suggesting effective therapeutic combinations are needed to increase their durability. Using immunocompetent SCLC genetically engineered mouse models (GEMMs) and syngeneic xenografts, we show durable efficacy with the combination of a highly specific Aurora A kinase inhibitor (LSN3321213) and PD-L1. LSN3321213 causes accumulation of tumor cells in mitosis with lower ASCL1 expression and higher expression of interferon target genes and antigen-presentation genes mimicking the inflammatory subtype in a cell-cycle-dependent manner. These data demonstrate that inflammatory gene expression is restored in mitosis in SCLC, which can be exploited by Aurora A kinase inhibition.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Camundongos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Antígeno B7-H1/genética , Aurora Quinase A/genética , Aurora Quinase A/uso terapêutico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Mitose , Interferons/genética
2.
Nature ; 613(7944): 565-574, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410718

RESUMO

Programming T cells to distinguish self from non-self is a vital, multi-step process that occurs in the thymus1-4. Signalling through the pre-T cell receptor (preTCR), a CD3-associated heterodimer comprising an invariant pTα chain and a clone-specific ß chain, is a critical early checkpoint in thymocyte development within the αß T cell lineage5,6. PreTCRs arrayed on CD4-CD8- double-negative thymocytes ligate peptides bound to major histocompatibility complex molecules (pMHC) on thymic stroma, similar to αß T cell receptors that appear on CD4+CD8+ double-positive thymocytes, but via a different molecular docking strategy7-10. Here we show the consequences of these distinct interactions for thymocyte progression using synchronized fetal thymic progenitor cultures that differ in the presence or absence of pMHC on support stroma, and single-cell transcriptomes at key thymocyte developmental transitions. Although major histocompatibility complex (MHC)-negative stroma fosters αß T cell differentiation, the absence of preTCR-pMHC interactions leads to deviant thymocyte transcriptional programming associated with dedifferentiation. Highly proliferative double-negative and double-positive thymocyte subsets emerge, with antecedent characteristics of T cell lymphoblastic and myeloid malignancies. Compensatory upregulation of diverse MHC class Ib proteins in B2m/H2-Ab1 MHC-knockout mice partially safeguards in vivo thymocyte progression, although disseminated double-positive thymic tumours may develop with ageing. Thus, as well as promoting ß chain repertoire broadening for subsequent αß T cell receptor utilization, preTCR-pMHC interactions limit cellular plasticity to facilitate normal thymocyte differentiation and proliferation that, if absent, introduce developmental vulnerabilities.


Assuntos
Desdiferenciação Celular , Antígenos de Histocompatibilidade Classe I , Receptores de Antígenos de Linfócitos T , Timócitos , Animais , Camundongos , Camundongos Knockout , Simulação de Acoplamento Molecular , Peptídeos/imunologia , Peptídeos/metabolismo , Timócitos/citologia , Timócitos/imunologia , Timo/citologia , Timo/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo
3.
Cancer Res ; 82(21): 4079-4092, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36066413

RESUMO

Immunotherapy has shown limited efficacy in patients with EGFR-mutated lung cancer. Efforts to enhance the immunogenicity of EGFR-mutated lung cancer have been unsuccessful to date. Here, we discover that MET amplification, the most common mechanism of resistance to third-generation EGFR tyrosine kinase inhibitors (TKI), activates tumor cell STING, an emerging determinant of cancer immunogenicity (1). However, STING activation was restrained by ectonucleosidase CD73, which is induced in MET-amplified, EGFR-TKI-resistant cells. Systematic genomic analyses and cell line studies confirmed upregulation of CD73 in MET-amplified and MET-activated lung cancer contexts, which depends on coinduction of FOSL1. Pemetrexed (PEM), which is commonly used following EGFR-TKI treatment failure, was identified as an effective potentiator of STING-dependent TBK1-IRF3-STAT1 signaling in MET-amplified, EGFR-TKI-resistant cells. However, PEM treatment also induced adenosine production, which inhibited T-cell responsiveness. In an allogenic humanized mouse model, CD73 deletion enhanced immunogenicity of MET-amplified, EGFR-TKI-resistant cells, and PEM treatment promoted robust responses regardless of CD73 status. Using a physiologic antigen recognition model, inactivation of CD73 significantly increased antigen-specific CD8+ T-cell immunogenicity following PEM treatment. These data reveal that combined PEM and CD73 inhibition can co-opt tumor cell STING induction in TKI-resistant EGFR-mutated lung cancers and promote immunogenicity. SIGNIFICANCE: MET amplification upregulates CD73 to suppress tumor cell STING induction and T-cell responsiveness in TKI-resistant, EGFR-mutated lung cancer, identifying a strategy to enhance immunogenicity and improve treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , Amplificação de Genes , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/metabolismo , 5'-Nucleotidase/metabolismo
4.
Cancer Cell ; 40(10): 1128-1144.e8, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36150391

RESUMO

KRAS-LKB1 (KL) mutant lung cancers silence STING owing to intrinsic mitochondrial dysfunction, resulting in T cell exclusion and resistance to programmed cell death (ligand) 1 (PD-[L]1) blockade. Here we discover that KL cells also minimize intracellular accumulation of 2'3'-cyclic GMP-AMP (2'3'-cGAMP) to further avoid downstream STING and STAT1 activation. An unbiased screen to co-opt this vulnerability reveals that transient MPS1 inhibition (MPS1i) potently re-engages this pathway in KL cells via micronuclei generation. This effect is markedly amplified by epigenetic de-repression of STING and only requires pulse MPS1i treatment, creating a therapeutic window compared with non-dividing cells. A single course of decitabine treatment followed by pulse MPS1i therapy restores T cell infiltration in vivo, enhances anti-PD-1 efficacy, and results in a durable response without evidence of significant toxicity.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Decitabina , Genes ras , Humanos , Ligantes , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(28): e2111003119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35787058

RESUMO

Immunotherapy has had a tremendous impact on cancer treatment in the past decade, with hitherto unseen responses at advanced and metastatic stages of the disease. However, the aggressive brain tumor glioblastoma (GBM) is highly immunosuppressive and remains largely refractory to current immunotherapeutic approaches. The stimulator of interferon genes (STING) DNA sensing pathway has emerged as a next-generation immunotherapy target with potent local immune stimulatory properties. Here, we investigated the status of the STING pathway in GBM and the modulation of the brain tumor microenvironment (TME) with the STING agonist ADU-S100. Our data reveal the presence of STING in human GBM specimens, where it stains strongly in the tumor vasculature. We show that human GBM explants can respond to STING agonist treatment by secretion of inflammatory cytokines. In murine GBM models, we show a profound shift in the tumor immune landscape after STING agonist treatment, with massive infiltration of the tumor-bearing hemisphere with innate immune cells including inflammatory macrophages, neutrophils, and natural killer (NK) populations. Treatment of established murine intracranial GL261 and CT-2A tumors by biodegradable ADU-S100-loaded intracranial implants demonstrated a significant increase in survival in both models and long-term survival with immune memory in GL261. Responses to treatment were abolished by NK cell depletion. This study reveals therapeutic potential and deep remodeling of the TME by STING activation in GBM and warrants further examination of STING agonists alone or in combination with other immunotherapies such as cancer vaccines, chimeric antigen receptor T cells, NK therapies, and immune checkpoint blockade.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células Matadoras Naturais , Animais , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Humanos , Imunidade , Imunoterapia , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Microambiente Tumoral
7.
Cancer Immunol Res ; 10(8): 947-961, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35678717

RESUMO

Activation of the stimulator of interferon genes (STING) pathway promotes antitumor immunity but STING agonists have yet to achieve clinical success. Increased understanding of the mechanism of action of STING agonists in human tumors is key to developing therapeutic combinations that activate effective innate antitumor immunity. Here, we report that malignant pleural mesothelioma cells robustly express STING and are responsive to STING agonist treatment ex vivo. Using dynamic single-cell RNA sequencing of explants treated with a STING agonist, we observed CXCR3 chemokine activation primarily in tumor cells and cancer-associated fibroblasts, as well as T-cell cytotoxicity. In contrast, primary natural killer (NK) cells resisted STING agonist-induced cytotoxicity. STING agonists enhanced migration and killing of NK cells and mesothelin-targeted chimeric antigen receptor (CAR)-NK cells, improving therapeutic activity in patient-derived organotypic tumor spheroids. These studies reveal the fundamental importance of using human tumor samples to assess innate and cellular immune therapies. By functionally profiling mesothelioma tumor explants with elevated STING expression in tumor cells, we uncovered distinct consequences of STING agonist treatment in humans that support testing combining STING agonists with NK and CAR-NK cell therapies.


Assuntos
Imunoterapia Adotiva , Células Matadoras Naturais , Proteínas de Membrana , Mesotelioma Maligno , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Proteínas de Membrana/agonistas , Receptores de Antígenos Quiméricos
8.
Clin Cancer Res ; 28(3): 468-478, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34667025

RESUMO

PURPOSE: Surgery often represents the best chance for disease control in locoregionally recurrent squamous cell carcinoma of the head and neck (SCCHN). We investigated dual immune-checkpoint inhibition [anti-PD-1, nivolumab (N), and anti-KIR, lirilumab (L)] before and after salvage surgery to improve disease-free survival (DFS). PATIENTS AND METHODS: In this phase II study, patients received N (240 mg) + L (240 mg) 7 to 21 days before surgery, followed by six cycles of adjuvant N + L. Primary endpoint was 1-year DFS; secondary endpoints were safety, pre-op radiologic response, and overall survival (OS). Correlatives included tumor sequencing, PD-L1 scoring, and immunoprofiling. RESULTS: Among 28 patients, the median age was 66, 86% were smokers; primary site: 9 oral cavity, 9 oropharynx, and 10 larynx/hypopharynx; 96% had prior radiation. There were no delays to surgery. Grade 3+ adverse events: 11%. At the time of surgery, 96% had stable disease radiologically, one had progression. Pathologic response to N + L was observed in 43% (12/28): 4/28 (14%) major (tumor viability, TV ≤ 10%) and 8/28 (29%) partial (TV ≤ 50%). PD-L1 combined positive score (CPS) at surgery was similar regardless of pathologic response (P = 0.71). Thirteen (46%) recurred (loco-regional = 10, distant = 3). Five of 28 (18%) had positive margins, 4 later recurred. At median follow-up of 22.8 months, 1-year DFS was 55.2% (95% CI, 34.8-71.7) and 1-year OS was 85.7% (95% CI, 66.3-94.4). Two-year DFS and OS were 64% and 80% among pathologic responders. CONCLUSIONS: (Neo)adjuvant N + L was well tolerated, with a 43% pathologic response rate. We observed favorable DFS and excellent 2-year OS among high-risk, previously treated patients exhibiting a pathologic response. Further evaluation of this strategy is warranted.See related commentary by Sacco and Cohen, p. 435.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias de Cabeça e Pescoço , Inibidores de Checkpoint Imunológico , Terapia Neoadjuvante , Recidiva Local de Neoplasia , Nivolumabe , Carcinoma de Células Escamosas de Cabeça e Pescoço , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Intervalo Livre de Doença , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/cirurgia , Inibidores de Checkpoint Imunológico/administração & dosagem , Recidiva Local de Neoplasia/tratamento farmacológico , Nivolumabe/administração & dosagem , Terapia de Salvação , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/cirurgia , Resultado do Tratamento
9.
J Immunother Cancer ; 9(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34593617

RESUMO

BACKGROUND: Immune checkpoint inhibitors have revolutionized cancer treatment, but the benefits in refractory patients with esophageal cancer have been modest. Predictors of response as well as new targets for novel therapeutic combinations are needed. In this phase 2 clinical trial, we tested single-agent pembrolizumab in patients with advanced esophageal cancer, who received at least one prior line of therapy. METHODS: Pembrolizumab 200 mg every 3 weeks was tested in 49 patients with refractory esophageal cancer: 39 with adenocarcinoma and 10 with esophageal squamous cell carcinoma. Major endpoints were radiological response by Immune-related Response Evaluation Criteria In Solid Tumors and survival. Tumor samples were evaluated for programmed cell death ligand 1 (PD-L1) expression, tumor mutational burden (TMB), and immune contexture by both NanoString mRNA expression analysis and flow cytometry. Peripheral blood mononuclear cells and a panel of circulating chemokines were also analyzed. RESULTS: The overall response rate (ORR) was 8% (4 of 49 patients; 95% CI 2.3% to 19.6%). Median overall survival (OS) was 5.8 months (95% CI 4.0 to 9.5). ORR and OS were not associated with histology. For PD-L1-positive patients, ORR was 13.3% (95% CI 1.7% to 40.5%) and median OS was 7.9 months (95% CI 4.7 to 15.5). A trend toward improved OS was observed in seven patients with a TMB ≥10 mut/Mb (p=0.086). Tumors with a PD-L1 Combined Positive Score ≥1 showed enrichment of LAG3 (p=0.005) and IDO1 (p=0.04) gene expression. Baseline levels of circulating CXCL10, interleukin 2 (IL2) receptor α (IL2RA) and IL6 were associated with survival: CXCL10 favorably, (HR 0.37, p=0.002 (progression-free survival); HR 0.55, p=0.018 (OS)); IL2RA and IL6 unfavorably (HR 1.57, p=0.020 for IL6 (OS); HR 2.36, p=0.025 for IL2RA (OS)). CONCLUSIONS: Pembrolizumab monotherapy was modestly effective in refractory esophageal cancer. Circulating CXCL10 at baseline appeared to be a robust predictor of response. Other T cell exhaustion markers are upregulated in PD-L1-positive patients, suggesting that immunotherapy combinations such as anti-LAG3/programmed cell death protein 1 (PD-1) or anti-IDO1/PD-1 may be of promise in refractory esophageal cancer.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos Imunológicos/farmacologia , Neoplasias Esofágicas/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sobrevida
10.
Front Oncol ; 11: 696512, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552864

RESUMO

BACKGROUND: Histone deacetylase (HDAC) overexpression has been documented in various cancers and may be associated with worse outcomes. Data from early-phase studies of advanced non-small cell lung cancer (NSCLC) suggest encouraging antitumor activity with the combination of an HDAC inhibitor and either platinum-based chemotherapy or an EGFR inhibitor; however, toxicity is a limiting factor in the use of pan-HDAC inhibitors. Selective inhibition of HDAC6 may represent a potential therapeutic target and preclinical studies revealed immunomodulatory effects with HDAC6 inhibition, suggesting the potential for combination with immune checkpoint inhibitors. This phase Ib, multicenter, single-arm, open-label, dose-escalation study investigated the HDAC6 inhibitor ACY-241 (citarinostat) plus nivolumab in patients with previously treated advanced NSCLC who had not received a prior HDAC or immune checkpoint inhibitor. METHODS: The orally administered ACY-241 dose was escalated (180, 360, or 480 mg once daily). Nivolumab was administered at 240 mg (day 15 of cycle 1, then every 2 weeks thereafter). The primary endpoint was to determine the maximum tolerated dose (MTD) of ACY-241 plus nivolumab. Secondary endpoints included safety, tolerability, and preliminary antitumor activity. Pharmacodynamics was an exploratory endpoint. RESULTS: A total of 18 patients were enrolled, with 17 patients treated. No dose-limiting toxicities (DLTs) occurred with ACY-241 at 180 or 360 mg; 2 DLTs occurred at 480 mg. The MTD of ACY-241 was 360 mg. The most common grade ≥ 3 treatment-emergent adverse events were dyspnea (n = 3; 18%) and pneumonia (n = 3; 18%). At the 180-mg dose, 1 complete response and 2 partial responses (PRs) were observed. At the 360-mg dose, 3 PRs were observed; 1 patient achieved stable disease (SD) and 1 experienced progressive disease (PD). At the 480-mg dose, no responses were observed; 1 patient achieved SD and 3 experienced PD. Acetylation analyses revealed transient increases in histone and tubulin acetylation levels following treatment. An increase in infiltrating total CD3+ T cells was observed following treatment. CONCLUSIONS: The study identified an MTD for ACY-241 plus nivolumab and the data suggest that the combination may be feasible in patients with advanced NSCLC. Responses were observed in patients with advanced NSCLC. CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT02635061 (identifier, NCT02635061).

11.
Nat Chem Biol ; 17(6): 711-717, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34035522

RESUMO

The zinc-finger transcription factor Helios is critical for maintaining the identity, anergic phenotype and suppressive activity of regulatory T (Treg) cells. While it is an attractive target to enhance the efficacy of currently approved immunotherapies, no existing approaches can directly modulate Helios activity or abundance. Here, we report the structure-guided development of small molecules that recruit the E3 ubiquitin ligase substrate receptor cereblon to Helios, thereby promoting its degradation. Pharmacological Helios degradation destabilized the anergic phenotype and reduced the suppressive activity of Treg cells, establishing a route towards Helios-targeting therapeutics. More generally, this study provides a framework for the development of small-molecule degraders for previously unligandable targets by reprogramming E3 ligase substrate specificity.


Assuntos
Proteínas de Ligação a DNA/efeitos dos fármacos , Fator de Transcrição Ikaros/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Fatores de Transcrição/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Humanos , Fator de Transcrição Ikaros/genética , Células Jurkat , Camundongos , Modelos Moleculares , Estrutura Molecular , Mutação/genética , Bibliotecas de Moléculas Pequenas , Especificidade por Substrato , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
Cancer Discov ; 11(8): 1952-1969, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33707236

RESUMO

Small cell lung carcinoma (SCLC) is highly mutated, yet durable response to immune checkpoint blockade (ICB) is rare. SCLC also exhibits cellular plasticity, which could influence its immunobiology. Here we discover that a distinct subset of SCLC uniquely upregulates MHC I, enriching for durable ICB benefit. In vitro modeling confirms epigenetic recovery of MHC I in SCLC following loss of neuroendocrine differentiation, which tracks with derepression of STING. Transient EZH2 inhibition expands these nonneuroendocrine cells, which display intrinsic innate immune signaling and basally restored antigen presentation. Consistent with these findings, murine nonneuroendocrine SCLC tumors are rejected in a syngeneic model, with clonal expansion of immunodominant effector CD8 T cells. Therapeutically, EZH2 inhibition followed by STING agonism enhances T-cell recognition and rejection of SCLC in mice. Together, these data identify MHC I as a novel biomarker of SCLC immune responsiveness and suggest novel immunotherapeutic approaches to co-opt SCLC's intrinsic immunogenicity. SIGNIFICANCE: SCLC is poorly immunogenic, displaying modest ICB responsiveness with rare durable activity. In profiling its plasticity, we uncover intrinsically immunogenic MHC Ihi subpopulations of nonneuroendocrine SCLC associated with durable ICB benefit. We also find that combined EZH2 inhibition and STING agonism uncovers this cell state, priming cells for immune rejection.This article is highlighted in the In This Issue feature, p. 1861.


Assuntos
Plasticidade Celular , Neoplasias Pulmonares/imunologia , Carcinoma de Pequenas Células do Pulmão/imunologia , Animais , Estudos de Coortes , Modelos Animais de Doenças , Registros Eletrônicos de Saúde , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Carcinoma de Pequenas Células do Pulmão/patologia
13.
J Clin Invest ; 131(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33151910

RESUMO

Resistance to oncogene-targeted therapies involves discrete drug-tolerant persister cells, originally discovered through in vitro assays. Whether a similar phenomenon limits efficacy of programmed cell death 1 (PD-1) blockade is poorly understood. Here, we performed dynamic single-cell RNA-Seq of murine organotypic tumor spheroids undergoing PD-1 blockade, identifying a discrete subpopulation of immunotherapy persister cells (IPCs) that resisted CD8+ T cell-mediated killing. These cells expressed Snai1 and stem cell antigen 1 (Sca-1) and exhibited hybrid epithelial-mesenchymal features characteristic of a stem cell-like state. IPCs were expanded by IL-6 but were vulnerable to TNF-α-induced cytotoxicity, relying on baculoviral IAP repeat-containing protein 2 (Birc2) and Birc3 as survival factors. Combining PD-1 blockade with Birc2/3 antagonism in mice reduced IPCs and enhanced tumor cell killing in vivo, resulting in durable responsiveness that matched TNF cytotoxicity thresholds in vitro. Together, these data demonstrate the power of high-resolution functional ex vivo profiling to uncover fundamental mechanisms of immune escape from durable anti-PD-1 responses, while identifying IPCs as a cancer cell subpopulation targetable by specific therapeutic combinations.


Assuntos
Imunoterapia , Proteínas de Neoplasias , Neoplasias Experimentais , Receptor de Morte Celular Programada 1 , RNA-Seq , Análise de Célula Única , Esferoides Celulares , Animais , Linhagem Celular Tumoral , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Esferoides Celulares/imunologia , Esferoides Celulares/patologia
14.
Clin Cancer Res ; 26(13): 3431-3442, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32209571

RESUMO

PURPOSE: Lung squamous cell carcinoma (LSCC) is a deadly disease for which only a subset of patients responds to immune checkpoint blockade (ICB) therapy. Therefore, preclinical mouse models that recapitulate the complex genetic profile found in patients are urgently needed. EXPERIMENTAL DESIGN: We used CRISPR genome editing to delete multiple tumor suppressors in lung organoids derived from Cre-dependent SOX2 knock-in mice. We investigated both the therapeutic efficacy and immunologic effects accompanying combination PD-1 blockade and WEE1 inhibition in both mouse models and LSCC patient-derived cell lines. RESULTS: We show that multiplex gene editing of mouse lung organoids using the CRISPR-Cas9 system allows for efficient and rapid means to generate LSCCs that closely mimic the human disease at the genomic and phenotypic level. Using this genetically defined mouse model and three-dimensional tumoroid culture system, we show that WEE1 inhibition induces DNA damage that primes the endogenous type I IFN and antigen presentation system in primary LSCC tumor cells. These events promote cytotoxic T-cell-mediated clearance of tumor cells and reduce the accumulation of tumor-infiltrating neutrophils. Beneficial immunologic features of WEE1 inhibition are further enhanced by the addition of anti-PD-1 therapy. CONCLUSIONS: We developed a mouse model system to investigate a novel combinatory approach that illuminates a clinical path hypothesis for combining ICB with DNA damage-inducing therapies in the treatment of LSCC.


Assuntos
Carcinoma de Células Escamosas/patologia , Modelos Animais de Doenças , Neoplasias Pulmonares/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos Transgênicos , Organoides/efeitos dos fármacos , Animais , Biomarcadores , Biomarcadores Tumorais , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Terapia Combinada , Edição de Genes , Expressão Gênica , Engenharia Genética , Humanos , Imuno-Histoquímica , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cancer Cell ; 37(1): 104-122.e12, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31935369

RESUMO

Eradicating tumor dormancy that develops following epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) treatment of EGFR-mutant non-small cell lung cancer, is an attractive therapeutic strategy but the mechanisms governing this process are poorly understood. Blockade of ERK1/2 reactivation following EGFR TKI treatment by combined EGFR/MEK inhibition uncovers cells that survive by entering a senescence-like dormant state characterized by high YAP/TEAD activity. YAP/TEAD engage the epithelial-to-mesenchymal transition transcription factor SLUG to directly repress pro-apoptotic BMF, limiting drug-induced apoptosis. Pharmacological co-inhibition of YAP and TEAD, or genetic deletion of YAP1, all deplete dormant cells by enhancing EGFR/MEK inhibition-induced apoptosis. Enhancing the initial efficacy of targeted therapies could ultimately lead to prolonged treatment responses in cancer patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Senescência Celular , Receptores ErbB/metabolismo , Feminino , Deleção de Genes , Humanos , Neoplasias Pulmonares/patologia , MAP Quinase Quinase 1/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mutação , Transdução de Sinais , Transcrição Gênica , Proteínas de Sinalização YAP
17.
Cell ; 175(4): 998-1013.e20, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388456

RESUMO

Treatment of cancer has been revolutionized by immune checkpoint blockade therapies. Despite the high rate of response in advanced melanoma, the majority of patients succumb to disease. To identify factors associated with success or failure of checkpoint therapy, we profiled transcriptomes of 16,291 individual immune cells from 48 tumor samples of melanoma patients treated with checkpoint inhibitors. Two distinct states of CD8+ T cells were defined by clustering and associated with patient tumor regression or progression. A single transcription factor, TCF7, was visualized within CD8+ T cells in fixed tumor samples and predicted positive clinical outcome in an independent cohort of checkpoint-treated patients. We delineated the epigenetic landscape and clonality of these T cell states and demonstrated enhanced antitumor immunity by targeting novel combinations of factors in exhausted cells. Our study of immune cell transcriptomes from tumors demonstrates a strategy for identifying predictors, mechanisms, and targets for enhancing checkpoint immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Melanoma/imunologia , Transcriptoma , Animais , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Antígenos CD/imunologia , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/farmacologia , Apirase/antagonistas & inibidores , Apirase/imunologia , Linhagem Celular Tumoral , Humanos , Antígenos Comuns de Leucócito/antagonistas & inibidores , Antígenos Comuns de Leucócito/imunologia , Melanoma/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fator 1 de Transcrição de Linfócitos T/metabolismo
18.
Cancer Immunol Res ; 6(12): 1511-1523, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30242021

RESUMO

We developed a screening assay in which luciferized ID8 expressing OVA was cocultured with transgenic CD8+ T cells specifically recognizing the model antigen in an H-2b-restricted manner. The assay was screened with a small-molecule library to identify compounds that inhibit or enhance T cell-mediated killing of tumor cells. Erlotinib, an EGFR inhibitor, was the top compound that enhanced T-cell killing of tumor cells. Subsequent experiments with erlotinib and additional EGFR inhibitors validated the screen results. EGFR inhibitors increased both basal and IFNγ-induced MHC class-I presentation, which enhanced recognition and lysis of tumor cell targets by CD8+ cytotoxic T lymphocytes. The ID8 cell line was also transduced to constitutively express Cas9, and a pooled CRISPR screen, utilizing the same target tumor cell/T-cell assay, identified single-guide (sg)RNAs targeting EGFR that sensitized tumor cells to T cell-mediated killing. Combination of PD-1 blockade with EGFR inhibition showed significant synergistic efficacy in a syngeneic model, further validating EGFR inhibitors as immunomodulatory agents that enhance checkpoint blockade. This assay can be screened in high-throughput with small-molecule libraries and genome-wide CRISPR/Cas9 libraries to identify both compounds and target genes, respectively, that enhance or inhibit T-cell recognition and killing of tumor cells. Retrospective analyses of squamous-cell head and neck cancer (SCCHN) patients treated with the combination of afatinib and pembrolizumab demonstrated a rate of clinical activity exceeding that of each single agent. Prospective clinical trials evaluating the combination of an EGFR inhibitor and PD-1 blockade should be conducted.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais/métodos , Receptores ErbB/antagonistas & inibidores , Ensaios de Triagem em Larga Escala/métodos , Inibidores de Proteínas Quinases/farmacologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Afatinib/administração & dosagem , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfócitos T CD8-Positivos , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Técnicas de Cocultura , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Luciferases de Vaga-Lume/genética , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Linfócitos T Citotóxicos/imunologia
19.
JCI Insight ; 3(8)2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29669930

RESUMO

Tuberous sclerosis complex (TSC) is an incurable multisystem disease characterized by mTORC1-hyperactive tumors. TSC1/2 mutations also occur in other neoplastic disorders, including lymphangioleiomyomatosis (LAM) and bladder cancer. Whether TSC-associated tumors will respond to immunotherapy is unknown. We report here that the programmed death 1 coinhibitory receptor (PD-1) is upregulated on T cells in renal angiomyolipomas (AML) and pulmonary lymphangioleiomyomatosis (LAM). In C57BL/6J mice injected with syngeneic TSC2-deficient cells, anti-PD-1 alone decreased 105K tumor growth by 67% (P < 0.0001); the combination of PD-1 and CTLA-4 blockade was even more effective in suppressing tumor growth. Anti-PD-1 induced complete rejection of TSC2-deficient 105K tumors in 37% of mice (P < 0.05). Double blockade of PD-1 and CTLA-4 induced rejection in 62% of mice (P < 0.01). TSC2 reexpression in TSC2-deficient TMKOC cells enhanced antitumor immunity by increasing T cell infiltration and production of IFN-γ/TNF-α by T cells, suggesting that TSC2 and mTORC1 play specific roles in the induction of antitumor immunity. Finally, 1 month of anti-PD-1 blockade reduced renal tumor burden by 53% (P < 0.01) in genetically engineered Tsc2+/- mice. Taken together, these data demonstrate for the first time to our knowledge that checkpoint blockade may have clinical efficacy for TSC and LAM, and possibly other benign tumor syndromes, potentially yielding complete and durable clinical responses.


Assuntos
Antígeno CTLA-4/antagonistas & inibidores , Imunoterapia/métodos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteína 2 do Complexo Esclerose Tuberosa/deficiência , Esclerose Tuberosa/genética , Angiomiolipoma/complicações , Angiomiolipoma/genética , Angiomiolipoma/imunologia , Animais , Antígeno CTLA-4/metabolismo , Quimioterapia Combinada , Linfangioleiomiomatose/complicações , Linfangioleiomiomatose/genética , Linfangioleiomiomatose/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Esclerose Tuberosa/tratamento farmacológico , Esclerose Tuberosa/etiologia , Esclerose Tuberosa/imunologia , Proteína 1 do Complexo Esclerose Tuberosa , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Neoplasias da Bexiga Urinária/complicações , Neoplasias da Bexiga Urinária/patologia
20.
Clin Cancer Res ; 24(18): 4437-4443, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29567812

RESUMO

Purpose: Plasma cell-free DNA (cfDNA) genotyping is increasingly used in cancer care, but assay accuracy has been debated. Because most cfDNA is derived from peripheral blood cells (PBC), we hypothesized that nonmalignant mutations harbored by hematopoietic cells (clonal hematopoiesis, CH) could be a cause of false-positive plasma genotyping.Experimental Design: We identified patients with advanced non-small cell lung cancer (NSCLC) with KRAS, JAK2, or TP53 mutations identified in cfDNA. With consent, PBC DNA was tested using droplet digital PCR (ddPCR) or next-generation sequencing (NGS) to test for CH-derived mutations.Results: We first studied plasma ddPCR results from 58 patients with EGFR-mutant NSCLC. Two had KRAS G12X detected in cfDNA, and both were present in PBC, including one where the KRAS mutation was detected serially for 20 months. We then studied 143 plasma NGS results from 122 patients with NSCLC and identified 5 JAK2 V617F mutations derived from PBC. In addition, 108 TP53 mutations were detected in cfDNA; for 33 of the TP53 mutations, PBC and tumor NGS were available for comparison, and 5 were present in PBC but absent in tumor, consistent with CH.Conclusions: We find that most JAK2 mutations, some TP53 mutations, and rare KRAS mutations detected in cfDNA are derived from CH not tumor. Clinicians ordering plasma genotyping must be prepared for the possibility that mutations detected in plasma, particularly in genes mutated in CH, may not represent true tumor genotype. Efforts to use plasma genotyping for cancer detection may need paired PBC genotyping so that CH-derived mutations are not misdiagnosed as occult malignancy. Clin Cancer Res; 24(18); 4437-43. ©2018 AACRSee related commentary by Bauml and Levy, p. 4352.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/sangue , Hematopoese/genética , Janus Quinase 2/sangue , Proteínas Proto-Oncogênicas p21(ras)/sangue , Proteína Supressora de Tumor p53/sangue , Carcinoma Pulmonar de Células não Pequenas/classificação , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Ácidos Nucleicos Livres/sangue , DNA de Neoplasias/sangue , DNA de Neoplasias/genética , Receptores ErbB/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Janus Quinase 2/genética , Masculino , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...