Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(35): 14680, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37622397

RESUMO

Correction for 'In situ observation of the on-surface thermal dehydrogenation of n-octane on Pt(111)' by Daniel Arribas et al., Nanoscale, 2023, https://doi.org/10.1039/d3nr02564k.

2.
Nanoscale ; 15(35): 14458-14467, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37458500

RESUMO

The catalytic dehydrogenation of alkanes constitutes a key step for the industrial conversion of these inert sp3-bonded carbon chains into other valuable unsaturated chemicals. To this end, platinum-based materials are among the most widely used catalysts. In this work, we characterize the thermal dehydrogenation of n-octane (n-C8H18) on Pt(111) under ultra-high vacuum using synchrotron-radiation X-ray photoelectron spectroscopy, temperature-programmed desorption and scanning tunneling microscopy, combined with ab initio calculations. At low activation temperatures, two different dehydrogenation stages are observed. At 330 K, n-C8H18 effectively undergoes a 100% regioselective single C-H bond cleavage at one methyl end. At 600 K, the chemisorbed molecules undergo a double dehydrogenation, yielding double bonds in their carbon skeletons. Diffusion of the dehydrogenated species leads to the formation of carbon molecular clusters, which represents the first step towards poisoning of the catalyst. Our results reveal the chemical mechanisms behind the first stages of alkane dehydrogenation on a platinum model surface at the atomic scale, paving the way for designing more efficient dehydrogenation catalysts.

3.
ACS Appl Mater Interfaces ; 15(18): 22637-22643, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37114767

RESUMO

High-density structures of subsurface phosphorus dopants in silicon continue to garner interest as a silicon-based quantum computer platform; however, a much-needed confirmation of their dopant arrangement has been lacking. In this work, we take advantage of the chemical specificity of X-ray photoelectron diffraction to obtain the precise structural configuration of P dopants in subsurface Si:P δ-layers. The growth of δ-layer systems with different levels of doping is carefully studied and verified using X-ray photoelectron spectroscopy and low-energy electron diffraction. Subsequent diffraction measurements reveal that in all cases, the subsurface dopants primarily substitute with Si atoms from the host material. Furthermore, no signs of carrier-inhibiting P-P dimerization can be observed. Our observations not only settle a nearly decade-long debate about the dopant arrangement but also demonstrate how X-ray photoelectron diffraction is surprisingly well suited for studying subsurface dopant structure. This work thus provides valuable input for an updated understanding of the behavior of Si:P δ-layers and the modeling of their derived quantum devices.

4.
Commun Chem ; 6(1): 61, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012362

RESUMO

Size-selected iron oxide nanoclusters are outstanding candidates for technological-oriented applications due to their high efficiency-to-cost ratio. However, despite many theoretical studies, experimental works on their oxidation mechanism are still limited to gas-phase clusters. Herein we investigate the oxidation of graphene-supported size-selected Fen clusters by means of high-resolution X-ray Photoelectron Spectroscopy. We show a dependency of the core electron Fe 2p3/2 binding energy of metallic and oxidized clusters on the cluster size. Binding energies are also linked to chemical reactivity through the asymmetry parameter which is related to electron density of states at the Fermi energy. Upon oxidation, iron atoms in clusters reach the oxidation state Fe(II) and the absence of other oxidation states indicates a Fe-to-O ratio close to 1:1, in agreement with previous theoretical calculations and gas-phase experiments. Such knowledge can provide a basis for a better understanding of the behavior of iron oxide nanoclusters as supported catalysts.

5.
Angew Chem Int Ed Engl ; 62(1): e202213295, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36325959

RESUMO

The synthesis of high-value fuels and plastics starting from small hydrocarbon molecules plays a central role in the current transition towards renewable energy. However, the detailed mechanisms driving the growth of hydrocarbon chains remain to a large extent unknown. Here we investigated the formation of hydrocarbon chains resulting from acetylene polymerization on a Ni(111) model catalyst surface. Exploiting X-ray photoelectron spectroscopy up to near-ambient pressures, the intermediate species and reaction products have been identified. Complementary in situ scanning tunneling microscopy observations shed light onto the C-C coupling mechanism. While the step edges of the metal catalyst are commonly assumed to be the active sites for the C-C coupling, we showed that the polymerization occurs instead on the flat terraces of the metallic surface.

6.
Nanoscale ; 13(44): 18789-18798, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34751294

RESUMO

In this work we prove that ordered single-layer MoS2 can be grown epitaxially on Ag(110), despite the different crystalline geometry of adsorbate and substrate. A comprehensive investigation of electronic and structural features of this interface is carried out by combining several techniques. Photoelectron diffraction experiments show that only two mirror crystalline domains coexist in equal amount in the grown layer. Angle-resolved valence band photoelectron spectroscopy shows that MoS2 undergoes a semiconductor-to-metal transition. Low-energy electron diffraction and scanning-tunneling microscopy experiments reveal the formation of a commensurate moiré superlattice at the interface, which implies an anisotropic uniaxial strain of the MoS2 crystalline lattice of ca. 3% in the [11̄0] direction of the Ag(110) surface. These outcomes suggest that the epitaxial growth on anisotropic substrates might be an effective and scalable method to generate a controlled and homogeneous strain in MoS2 and possibly other transition-metal dichalcogenides.

7.
J Phys Chem C Nanomater Interfaces ; 125(17): 9556-9563, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34276855

RESUMO

The possibility of depositing precisely mass-selected Ag clusters (Ag1, Ag3, and Ag7) on Ru(0001) was instrumental in determining the importance of the in-plane coordination number (CN) and allowed us to establish a linear dependence of the Ag 3d5/2 core-level shift on CN. The fast cluster surface diffusion at room temperature, caused by the low interaction between silver and ruthenium, leads to the formation of islands with a low degree of ordering, as evidenced by the high density of low-coordinated atomic configurations, in particular CN = 4 and 5. On the contrary, islands formed upon Ag7 deposition show a higher density of atoms with CN = 6, thus indicating the formation of islands with a close-packed atomic arrangement. This combined experimental and theoretical approach, when applied to clusters of different elements, offers the perspective to reveal nonequivalent local configurations in two-dimensional (2D) materials grown using different building blocks, with potential implications in understanding electronic and reactivity properties at the atomic level.

8.
Materials (Basel) ; 14(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34300873

RESUMO

Despite the ideal performance demonstrated by mixed perovskite materials when used as active layers in photovoltaic devices, the factor which still hampers their use in real life remains the poor stability of their physico-chemical and functional properties when submitted to prolonged permanence in atmosphere, exposure to light and/or to moderately high temperature. We used high resolution photoelectron spectroscopy to compare the chemical state of triple cation, double halide Csx(FA0.83MA0.17)(1-x)Pb(I0.83Br0.17)3 perovskite thin films being freshly deposited or kept for one month in the dark or in the light in environmental conditions. Important deviations from the nominal composition were found in the samples aged in the dark, which, however, did not show evident signs of oxidation and basically preserved their own electronic structures. Ageing in the light determined a dramatic material deterioration with heavily perturbed chemical composition also due to reactions of the perovskite components with surface contaminants, promoted by the exposure to visible radiation. We also investigated the implications that 2D MXene flakes, recently identified as effective perovskite additive to improve solar cell efficiency, might have on the labile resilience of the material to external agents. Our results exclude any deleterious MXene influence on the perovskite stability and, actually, might evidence a mild stabilizing effect for the fresh samples, which, if doped, exhibited a lower deviation from the expected stoichiometry with respect to the undoped sample. The evolution of the undoped perovskites under thermal stress was studied by heating the samples in UHV while monitoring in real time, simultaneously, the behaviour of four representative material elements. Moreover, we could reveal the occurrence of fast changes induced in the fresh material by the photon beam as well as the enhanced decomposition triggered by the concurrent X-ray irradiation and thermal heating.

9.
ACS Nano ; 15(3): 4245-4255, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33586963

RESUMO

MXenes are a young family of two-dimensional transition metal carbides, nitrides, and carbonitrides with highly controllable structure, composition, and surface chemistry to adjust for target applications. Here, we demonstrate the modifications of two-dimensional MXenes by low-energy ion implantation, leading to the incorporation of Mn ions in Ti3C2Tx (where Tx is a surface termination) thin films. Damage and structural defects caused by the implantation process are characterized at different depths by XPS on Ti 2p core-level spectra, by ToF-SIMS, and with electron energy loss spectroscopy analyses. Results show that the ion-induced alteration of the damage tolerant Ti3C2Tx layer is due to defect formation at both Ti and C sites, thereby promoting the functionalization of these sites with oxygen groups. This work contributes to the inspiring approach of tailoring 2D MXene structure and properties through doping and defect formation by low-energy ion implantation to expand their practical applications.

11.
J Phys Chem C Nanomater Interfaces ; 124(36): 19655-19665, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33163138

RESUMO

We present a comparative study of the room-temperature adsorption of p-aminophenol (p-AP) molecules on three metal surfaces, namely Cu(110), Cu(111) and Pt(111). We show that the chemical nature and the structural symmetry of the substrate control the activation of the terminal molecular groups, which result in different arrangements of the interfacial molecular layer. To this aim, we have used in-situ STM images combined with synchrotron radiation high resolution XPS and NEXAFS spectra, and the results were simulated by DFT calculations. On copper, the interaction between the molecules and the surface is weaker on the (111) surface crystal plane than on the (110) one, favouring molecular diffusion and leading to larger ordered domains. We demonstrate that the p-AP molecule undergoes spontaneous dehydrogenation of the alcohol group to form phenoxy species on all the studied surfaces, however, this process is not complete on the less reactive surface, Cu(111). The Pt(111) surface exhibits stronger molecule-surface interaction, inducing a short-range ordered molecular arrangement that increases overtime. In addition, on the highly reactive Pt(111) surface other chemical processes are evidenced, such as the dehydrogenation of the amine group.

12.
ACS Nano ; 14(10): 13629-13637, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32910634

RESUMO

Cluster superlattice membranes consist of a two-dimensional hexagonal lattice of similar-sized nanoclusters sandwiched between single-crystal graphene and an amorphous carbon matrix. The fabrication process involves three main steps, the templated self-organization of a metal cluster superlattice on epitaxial graphene on Ir(111), conformal embedding in an amorphous carbon matrix, and subsequent lift-off from the Ir(111) substrate. The mechanical stability provided by the carbon-graphene matrix makes the membrane stable as a free-standing material and enables transfer to other substrates. The fabrication procedure can be applied to a wide variety of cluster materials and cluster sizes from the single-atom limit to clusters of a few hundred atoms, as well as other two-dimensional layer/host matrix combinations. The versatility of the membrane composition, its mechanical stability, and the simplicity of the transfer procedure make cluster superlattice membranes a promising material in catalysis, magnetism, energy conversion, and optoelectronics.

13.
Angew Chem Int Ed Engl ; 59(51): 23220-23227, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32761699

RESUMO

On-surface synthesis is emerging as a highly rational bottom-up methodology for the synthesis of molecular structures that are unattainable or complex to obtain by wet chemistry. Here, oligomers of meta-polyaniline, a known ferromagnetic polymer, were synthesized from para-aminophenol building-blocks via an unexpected and highly specific on-surface formal 1,4 Michael-type addition at the meta position, driven by the reduction of the aminophenol molecule. We rationalize this dehydrogenation and coupling reaction mechanism with a combination of in situ scanning tunneling and non-contact atomic force microscopies, high-resolution synchrotron-based X-ray photoemission spectroscopy and first-principles calculations. This study demonstrates the capability of surfaces to selectively modify local molecular conditions to redirect well-established synthetic routes, such as Michael coupling, towards the rational synthesis of new covalent nanostructures.

14.
Chem Sci ; 12(1): 170-178, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34168740

RESUMO

In this work, we characterize the adsorption of pentacene molecules on Ir(111) and their behaviour as a function of temperature. While room temperature adsorption preserves the molecular structure of the five benzene rings and the bonds between carbon and hydrogen atoms, we find that complete C-H molecular break up takes place between 450 K and 550 K, eventually resulting in the formation of small graphene islands at temperatures larger than 800 K. Most importantly a reversible temperature-induced dehydrogenation process is found when the system is annealed/cooled in a hydrogen atmosphere with a pressure higher than 5 × 10-7 mbar. This novel process could have interesting implications for the synthesis of larger acenes and for the manipulation of graphene nanoribbon properties.

15.
RSC Adv ; 10(3): 1522-1534, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35494695

RESUMO

Carbon layers are deposited on 100 nm thick atomically clean (001) lead zirconate titanate (PZT) in ultrahigh vacuum, ruling out the presence of any contaminants. X-ray photoelectron spectroscopy is used to assess the substrate surface or interface composition, substrate polarization and the thickness of carbon layers, which ranges from less than one monolayer (1 ML) of graphene to several monolayers. Atomically clean PZT(001) exhibit inwards polarization, and this polarization reverses the sign upon carbon deposition. Cationic vacancies are detected near the PZT surface, consistent with heavy p doping of these films near the surface. The carbon layers exhibited a consistent proportion of atoms forming in-plane sp2 bonds, as detected by near-edge absorption fine structure (NEXAFS) analysis and confirmed partially by scanning tunneling microscopy (STM). In situ poling with simultaneous in-plane transport measurements revealed the presence of resistance anti-hysteresis versus the polarization orientation for films with less than 1 ML carbon amount, evolving towards 'normal' hysteresis for thicker carbon films. The anti-hysteresis is explained in terms of a mixed screening mechanism, involving charge carriers from the sp2 carbon layers together with holes or ionized acceptors in PZT(001) near the interface. For thicker films, the compensation mechanism becomes extrinsic, involving mostly electrons and holes from carbon, yielding the expected hysteresis.

16.
ACS Nano ; 13(10): 12230-12241, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31589408

RESUMO

Graphene has been proposed to be either fully transparent to van der Waals interactions to the extent of allowing switching between hydrophobic and hydrophilic behavior, or partially transparent (translucent), yet there has been considerable debate on this topic, which is still ongoing. In a combined experimental and theoretical study we investigate the effects of different metal substrates on the adsorption energy of atomic (argon) and molecular (carbon monoxide) adsorbates on high-quality epitaxial graphene. We demonstrate that while the adsorption energy is certainly affected by the chemical composition of the supporting substrate and by the corrugation of the carbon lattice, the van der Waals interactions between adsorbates and the metal surfaces are partially screened by graphene. Our results indicate that the concept of graphene translucency, already introduced in the case of water droplets, is found to hold more generally also in the case of single polar molecules and atoms, which are apolar.

17.
ACS Nano ; 13(2): 1828-1838, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30633501

RESUMO

Nanostructured architectures based on graphene/metal interfaces might be efficiently exploited in hydrogen storage due to the attractive capability to provide adsorption sites both at the top side of graphene and at the metal substrate after intercalation. We combined in situ high-resolution X-ray photoelectron spectroscopy and scanning tunneling microscopy with theoretical calculations to determine the arrangement of hydrogen atoms at the graphene/Ni(111) interface at room temperature. Our results show that at low coverage H atoms predominantly adsorb as monomers and that chemisorption saturates when ∼25% of the surface is hydrogenated. In parallel, with a much lower rate, H atoms intercalate below graphene and bind to Ni surface sites. Intercalation progressively destabilizes the C-H bonds and triggers the release of the hydrogen chemisorbed on graphene. Valence band and near-edge absorption spectroscopy demonstrate that the graphene layer is fully lifted when the Ni surface is saturated with H. Thermal programmed desorption was used to determine the stability of the hydrogenated interface. Whereas the H atoms chemisorbed on graphene remain unperturbed over a wide temperature range, the intercalated phase abruptly desorbs 50-100 K above room temperature.

18.
J Phys Condens Matter ; 31(8): 085001, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30628585

RESUMO

We demonstrate a procedure for obtaining a H-intercalated graphene layer that is found to be chemically decoupled from the underlying metal substrate. Using high-resolution x-ray photoelectron spectroscopy and scanning tunneling microscopy techniques, we reveal that the hydrogen intercalated graphene is p-doped by about 0.28 eV, but also identify structures of interfacial hydrogen. Furthermore, we investigate the reactivity of the decoupled layer towards atomic hydrogen and vibrationally excited molecular hydrogen and compare these results to the case of non-intercalated graphene. We find distinct differences between the two. Finally, we discuss the possibility to form graphane clusters on an iridium substrate by combined intercalation and H atom exposure experiments.

19.
Phys Rev Lett ; 121(13): 136402, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30312046

RESUMO

The spin structure of the valence and conduction bands at the K[over ¯] and K[over ¯]^{'} valleys of single-layer WS_{2} on Au(111) is determined by spin- and angle-resolved photoemission and inverse photoemission. The bands confining the direct band gap of 1.98 eV are out-of-plane spin polarized with spin-dependent energy splittings of 417 meV in the valence band and 16 meV in the conduction band. The sequence of the spin-split bands is the same in the valence and in the conduction bands and opposite at the K[over ¯] and the K[over ¯]^{'} high-symmetry points. The first observation explains "dark" excitons discussed in optical experiments; the latter points to coupled spin and valley physics in electron transport. The experimentally observed band dispersions are discussed along with band structure calculations for a freestanding single layer and for a single layer on Au(111).

20.
Nanoscale ; 10(16): 7396-7406, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29616254

RESUMO

The growth of graphene by molecular beam epitaxy from an elemental carbon precursor is a very promising technique to overcome some of the main limitations of the chemical vapour deposition approach, such as the possibility to synthesize graphene directly on a wide variety of surfaces including semiconductors and insulators. However, while the individual steps of the chemical vapour deposition growth process have been extensively studied for several surfaces, such knowledge is still missing for the case of molecular beam epitaxy, even though it is a key ingredient to optimise its performance and effectiveness. In this work, we have performed a combined experimental and theoretical study comparing the growth rate of the molecular beam epitaxy and chemical vapour deposition processes on the prototypical Ir (111) surface. In particular, by employing high-resolution fast X-ray photoelectron spectroscopy, we were able to follow the growth of both single- and multi-layer graphene in real time, and to identify the spectroscopic fingerprints of the different C layers. Our experiments, supported by density functional theory calculations, highlight the role of the interaction between different C precursor species and the growing graphene flakes on the growth rate of graphene. These results provide an overview of the main differences between chemical vapour deposition and molecular beam epitaxy growth and thus on the main parameters which can be tuned to optimise growth conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...