Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 25(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059356

RESUMO

In order to improve the suitability of NaBH4 as a clean fuel, its decomposition temperature needs to be decreased to below 535 °C, while its hydrogen release must be as high as possible. In this work, the influence of a collection of first and second period transition metal fluorides on the destabilization of NaBH4 is studied on samples produced by ball milling NaBH4 with 2 mol% of a metal fluoride additive. The effects obtained by increasing additive amount and changing oxidation state are also evaluated for NbF5, CeF3, and CeF4. The as-milled products are characterized by in-house power X-ray diffraction, while the hydrogen release and decomposition are monitored by temperature programmed desorption with residual gas analysis, differential scanning calorimetry, and thermogravimetry. The screening of samples containing 2 mol% of additive shows that distinctive groups of transition metal fluorides affect the ball milling process differently depending on their enthalpy of formation, melting point, or their ability to react at the temperatures achieved during ball milling. This leads to the formation of NaBF4 in the case of TiF4, MnF3, VF4, CdF2, NbF5, AgF, and CeF3 and the presence of the metal in CrF3, CuF2, and AgF. There is no linear correlation between the position of the transition metal in the periodic table and the observed behavior. The thermal behavior of the products after milling is given by the remaining NaBH4, fluoride, and the formation of intermediate metastable compounds. A noticeable decrease of the decomposition temperature is seen for the majority of the products, with the exceptions of the samples containing YF3, AgF, and CeF3. The largest decrease of the decomposition temperature is observed for NbF5. When comparing increasing amounts of the same additive, the largest decrease of the decomposition temperature is observed for 10 mol% of NbF5. Higher amounts of additive result in the loss of the NaBH4 thermal signal and ultimately the loss of the crystalline borohydride. When comparing additives with the same transition metal and different oxidation states, the most efficient additive is found to be the one with a higher oxidation state. Furthermore, among all the samples studied, higher oxidation state metal fluorides are found to be the most destabilizing agents for NaBH4. Overall, the present study shows that there is no single parameter affecting the destabilization of NaBH4 by transition metal fluorides. Instead, parameters such as the transition metal electronegativity and oxidation state or the enthalpy of formation of the fluoride and its melting point are competing to influence the destabilization. In particular, it is found that the combination of a high metal oxidation state and a low fluoride melting point will enhance destabilization. This is observed for MnF3, NbF5, NiF2, and CuF2, which lead to high gas releases from the decomposition of NaBH4 at the lowest decomposition temperatures.


Assuntos
Boroidretos/química , Fluoretos/química , Hidrogênio/química , Energia Renovável , Humanos , Metais/química
2.
J Phys Chem B ; 111(46): 13301-6, 2007 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-17973422

RESUMO

Among the thermodynamic properties of novel materials for solid-state hydrogen storage, the heat of formation/decomposition of hydrides is the most important parameter to evaluate the stability of the compound and its temperature and pressure of operation. In this work, the desorption and absorption behaviors of three different classes of hydrides are investigated under different hydrogen pressures using high-pressure differential scanning calorimetry (HP-DSC). The HP-DSC technique is used to estimate the equilibrium pressures as a function of temperature, from which the heat of formation is derived. The relevance of this procedure is demonstrated for (i) magnesium-based compounds (Ni-doped MgH2), (ii) Mg-Co-based ternary hydrides (Mg-CoHx) and (iii) Alanate complex hydrides (Ti-doped NaAlH4). From these results, it can be concluded that HP-DSC is a powerful tool to obtain a good approximation of the thermodynamic properties of hydride compounds by a simple and fast study of desorption and absorption properties under different pressures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA