Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 689316, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421943

RESUMO

Soil contamination by lead (Pb) has become one of the major ecological threats to the environment. Understanding the mechanisms of Pb transport and deposition in plants is of great importance to achieve a global Pb reduction. We exposed a collection of 360 Arabidopsis thaliana natural accessions to a Pb-polluted soil. Germination rates, growth, and leaf Pb concentrations showed extensive variation among accessions. These phenotypic data were subjected to genome wide association studies (GWAs) and we found a significant association on chromosome 1 for low leaf Pb accumulation. Genes associated with significant SNP markers were evaluated and we selected EXTENSIN18 (EXT18) and TLC (TRAM-LAG1-CLN8) as candidates for having a role in Pb homeostasis. Six Pb-tolerant accessions, three of them exhibiting low leaf Pb content, and three of them with high leaf Pb content; two Pb-sensitive accessions; two knockout T-DNA lines of GWAs candidate genes (ext18, tlc); and Col-0 were screened under control and high-Pb conditions. The relative expression of EXT18, TLC, and other genes described for being involved in Pb tolerance was also evaluated. Analysis of Darwinian fitness, root and leaf ionome, and TEM images revealed that Pb-tolerant accessions employ two opposing strategies: (1) low translocation of Pb and its accumulation into root cell walls and vacuoles, or (2) high translocation of Pb and its efflux to inactive organelles or intracellular spaces. Plants using the first strategy exhibited higher expression of EXT18 and HMA3, thicker root cell walls and Pb vacuolar sequestration, suggesting that these genes may contribute to the deposition of Pb in the roots. On the other hand, plants translocating high amounts of Pb showed upregulation of TLC and ABC transporters, indicating that these plants were able to properly efflux Pb in the aerial tissues. We conclude that EXT18 and TLC upregulation enhances Pb tolerance promoting its sequestration: EXT18 favors the thickening of the cell walls improving Pb accumulation in roots and decreasing its toxicity, while TLC facilitates the formation of dictyosome vesicles and the Pb encapsulation in leaves. These findings are relevant for the design of phytoremediation strategies and environment restoration.

2.
Front Microbiol ; 12: 653027, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34140935

RESUMO

Plant communities and fertilization may have an impact on soil microbiome. Most commercial olive trees are minerally fertilized, while this practice is being replaced by the use of organic amendments. Organic amendments can both fertilize and promote plant growth-promoting organisms. Our aims were (i) to describe the changes in soil bacterial and fungal communities induced by the presence of young olive trees and their interaction with organic amendments and (ii) to compare the effects of mineral and organic fertilization. We set up two parallel experiments in pots using a previously homogenized soil collected from a commercial olive orchard: in the first one, we grew olive saplings in unamended and organically amended soils with two distinct composts and compared these two soils incubated without a plant, while in the second experiment, we comparatively tested the effects of organic and mineral fertilization. OTUs and the relative abundances of bacterial and fungal genera and phyla were analyzed by 16S rRNA and ITS1 gene amplicon using high-throughput sequencing. Basal respiration and substrate-induced respiration were measured by MicroRespTM. The effects of the different treatments were analyzed in all phyla and in the 100 most abundant genera. The presence of olive saplings increased substrate-induced respiration and bacterial and fungal richness and diversity. Organic amendments greatly affected both bacterial and fungal phyla and increased bacterial richness while not affecting fungal richness. Mineral fertilization increased the relative abundance of the less metabolically active bacterial phyla (Actinobacteria and Firmicutes), while it reduced the most metabolically active phylum, Bacteroidetes. Mineral fertilization increased the relative abundance of three N2-fixing Actinobacteria genera, while organic fertilization only increased one genus of Proteobacteria. In organically and minerally fertilized soils, high basal respiration rates were associated with low fungal diversity. Basidiomycota and Chytridiomycota relative abundances positively correlated with basal respiration and substrate-induced respiration, while Ascomycota correlated negatively. Indeed, the Ascomycota phyla comprised most of the fungal genera decreased by organic amendments. The symbiotrophic phylum Glomeromycota did not correlate with any of the C sources. The relative abundance of this phylum was promoted by the presence of plants but decreased when amending soils with composts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...