Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12801, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834710

RESUMO

We use complex systems science to explore the emergent behavioral patterns that typify eusocial species, using collective ant foraging as a paradigmatic example. Our particular aim is to provide a methodology to quantify how the collective orchestration of foraging provides functional advantages to ant colonies. For this, we combine (i) a purpose-built experimental arena replicating ant foraging across realistic spatial and temporal scales, and (ii) a set of analytical tools, grounded in information theory and spin-glass approaches, to explore the resulting data. This combined approach yields computational replicas of the colonies; these are high-dimensional models that store the experimental foraging patterns through a training process, and are then able to generate statistically similar patterns, in an analogous way to machine learning tools. These in silico models are then used to explore the colony performance under different resource availability scenarios. Our findings highlight how replicas of the colonies trained under constant and predictable experimental food conditions exhibit heightened foraging efficiencies, manifested in reduced times for food discovery and gathering, and accelerated transmission of information under similar conditions. However, these same replicas demonstrate a lack of resilience when faced with new foraging conditions. Conversely, replicas of colonies trained under fluctuating and uncertain food conditions reveal lower efficiencies at specific environments but increased resilience to shifts in food location.


Assuntos
Formigas , Comportamento Alimentar , Animais , Formigas/fisiologia , Comportamento Alimentar/fisiologia , Simulação por Computador , Análise Espaço-Temporal , Comportamento Social , Comportamento Animal/fisiologia , Modelos Biológicos
2.
Ecol Lett ; 19(11): 1299-1313, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27634051

RESUMO

Understanding the structural complexity and the main drivers of animal search behaviour is pivotal to foraging ecology. Yet, the role of uncertainty as a generative mechanism of movement patterns is poorly understood. Novel insights from search theory suggest that organisms should collect and assess new information from the environment by producing complex exploratory strategies. Based on an extension of the first passage time theory, and using simple equations and simulations, we unveil the elementary heuristics behind search behaviour. In particular, we show that normal diffusion is not enough for determining optimal exploratory behaviour but anomalous diffusion is required. Searching organisms go through two critical sequential phases (approach and detection) and experience fundamental search tradeoffs that may limit their encounter rates. Using experimental data, we show that biological search includes elements not fully considered in contemporary physical search theory. In particular, the need to consider search movement as a non-stationary process that brings the organism from one informational state to another. For example, the transition from remaining in an area to departing from it may occur through an exploratory state where cognitive search is challenged. Therefore, a more comprehensive view of foraging ecology requires including current perspectives about movement under uncertainty.


Assuntos
Comportamento Alimentar/fisiologia , Modelos Biológicos , Atividade Motora/fisiologia , Animais , Caenorhabditis elegans/fisiologia , Simulação por Computador , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...