Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 617
Filtrar
1.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293091

RESUMO

Research resources like transgenic animals and antibodies are the workhorses of biomedicine, enabling investigators to relatively easily study specific disease conditions. As key biological resources, transgenic animals and antibodies are often validated, maintained, and distributed from university based stock centers. As these centers heavily rely largely on grant funding, it is critical that they are cited by investigators so that usage can be tracked. However, unlike systems for tracking the impact of papers, the conventions and systems for tracking key resource usage and impact lag behind. Previous studies have shown that about 50% of the resources are not findable, making the studies they are supporting irreproducible, but also makes tracking resources difficult. The RRID project is filling this gap by working with journals and resource providers to improve citation practices and to track the usage of these key resources. Here, we reviewed 10 years of citation practices for five university based stock centers, characterizing each reference into two broad categories: findable (authors could use the RRID, stock number, or full name) and not findable (authors could use a nickname or a common name that is not unique to the resource). The data revealed that when stock centers asked their communities to cite resources by RRID, in addition to helping stock centers more easily track resource usage by increasing the number of RRID papers, authors shifted from citing resources predominantly by nickname (~50% of the time) to citing them by one of the findable categories (~85%) in a matter of several years. In the case of one stock center, the MMRRC, the improvement in findability is also associated with improvements in the adherence to NIH rigor criteria, as determined by a significant increase in the Rigor and Transparency Index for studies using MMRRC mice. From this data, it was not possible to determine whether outreach to authors or changes to stock center websites drove better citation practices, but findability of research resources and rigor adherence was improved.

2.
Poult Sci ; 103(1): 103195, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039937

RESUMO

Two hundred eighty-eight male Nicholas Large White turkey poults were used to determine the effect of supplementing turkeys with chromium propionate (Cr Prop) from 1 to 84 d of age on performance and animal safety. Treatments consisted of Cr prop supplemented to provide 0, 0.2, or 1.0 mg Cr/kg diet. One mg of supplemental Cr is 5 times (x) the minimal concentration of Cr Prop that enhanced insulin sensitivity in turkeys. Each treatment consisted of 8 floor pens with 12 poults per pen. Turkeys were individually weighed initially, and at the end of the starter 1 (d 21), starter 2 (d 42), grower 1 (d 63), and grower 2 phase (d 84). On d 85, blood was collected from the wing vein in heparinized tubes from 2 turkeys per pen for plasma chemistry measurements. A separate blood sample was collected from the same turkeys in tubes containing K2EDTA for hematology measurements. Turkey performance was not affected by treatment during the starter 1 phase. Gain was greater (P = 0.024) and feed/gain lower (P = 0.030) for turkeys supplemented with Cr compared with controls during the starter 2 phase. Over the entire 84-d study turkeys supplemented with Cr had greater (P = 0.005) ADG and tended (P = 0.074) to gain more efficiently than controls. Gain (P = 0.180) and feed/gain (P = 0.511) of turkeys supplemented with 0.2 mg Cr/kg did not differ from those receiving 1.0 mg Cr/kg over the entire 84-d study. Feed intake was not affected by treatment. Body weights of turkeys supplemented with Cr were heavier (P = 0.005) than controls by d 84. Chromium supplementation did not affect hematological measurements and had minimal effect on plasma chemistry variables. Results of this study indicates that Cr Prop supplementation can improve turkey performance, and is safe when supplemented to turkey diets at 5x the minimal concentration that enhanced insulin sensitivity.


Assuntos
Resistência à Insulina , Perus , Masculino , Animais , Galinhas , Suplementos Nutricionais , Dieta/veterinária , Ração Animal/análise , Cromo
3.
Poult Sci ; 103(1): 103215, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992621

RESUMO

The objective of this study was to evaluate the effects of dietary chromium (Cr), as Cr propionate (Cr Prop), on measures of insulin sensitivity in turkeys. Plasma glucose and nonesterified fatty acid (NEFA), and liver glycogen concentrations were used as indicators of insulin sensitivity. One-day-old Nicholas Large White female poults (n = 336) were randomly assigned to dietary treatments consisting of 0 (control), 0.2, 0.4, or 0.6 mg supplemental Cr/kg diet. Each treatment consisted of 12 replicate cages with 7 turkeys per cage. Final BW were taken on d 34, and on d 35 two birds from each cage were sampled for plasma glucose and NEFA, and liver glycogen determination at the initiation (fed state) and termination (fasted state) of a 24-h fast. Following a 24-h fast, 2 turkeys per cage were refed (refed state) their treatment diet for 4 h, and then harvested. Feed/gain and ADG did not differ between control and Cr-supplemented turkeys over the 34-d study, but feed intake tended (P = 0.071) to be greater for controls than turkeys receiving 0.4 mg Cr/kg diet. Fed turkeys had greater plasma glucose (P = 0.002) and liver glycogen (P = 0.001) concentrations, and lower (P = 0.001) NEFA concentrations than fasted birds. Turkeys refed after fasting had greater (P = 0.001) plasma glucose and liver glycogen concentrations, and lower (P = 0.001) plasma NEFA levels than fed turkeys. Liver glycogen and plasma NEFA concentrations did not differ among control and Cr-supplemented birds in the fed, fasted, or refed state. Plasma glucose concentrations were not affected by treatment in fed or fasted turkeys. Turkeys supplemented with 0.2 or 0.4 mg Cr/kg and refed after fasting had lower (quadratic, P = 0.038) plasma glucose concentrations than controls. Plasma glucose concentrations in refed birds did not differ among Cr-supplemented turkeys. The lower plasma glucose concentration in Cr-supplemented turkeys following refeeding is consistent with Cr enhancing insulin sensitivity.


Assuntos
Resistência à Insulina , Animais , Feminino , Glicemia , Propionatos/farmacologia , Perus , Glicogênio Hepático , Ácidos Graxos não Esterificados , Galinhas
4.
Poult Sci ; 103(1): 103196, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37980756

RESUMO

This study was conducted to determine the effect of supplementing turkey diets with chromium propionate (Cr Prop) on Cr concentrations in tissues consumed by humans. Nicholas White male day-old poults were used in this study. Treatments consisted of 0, 0.20, or 1.0 mg supplemental Cr/kg diet. Each treatment consisted of 8 replicate floor pens with 12 poults housed per pen. Diets were fed ad libitum for 84 d. At the end of the study, 2 turkeys per pen were euthanized and samples of liver, breast muscle, kidney, and skin with adhering fat were collected from a similar location in each bird for Cr analysis. Orthogonal contrasts were used to compare the 2 Cr supplemented treatments to the control (0 added Cr) and 0.20 mg Cr to 1.0 mg Cr/kg diet. When expressed on a DM or wet tissue basis, liver (P = 0.001) and muscle (P = 0.015) Cr concentrations were greater in turkeys supplemented with Cr compared with controls. Chromium concentrations in liver were also greater (P = 0.001) in turkeys supplemented with 1.0 mg Cr/kg than those receiving 0.20 mg Cr/kg. Concentrations of Cr in kidney and skin + fat were not affected by treatment. Considering the adequate intake of Cr established for humans, supplementation of Cr Prop at up to 1.0 mg Cr/kg diet would have minimal effect on total Cr intake by humans.


Assuntos
Cromo , Perus , Humanos , Masculino , Animais , Cromo/farmacologia , Galinhas , Suplementos Nutricionais/análise , Dieta/veterinária , Inocuidade dos Alimentos , Ração Animal/análise
5.
Mamm Genome ; 34(2): 180-199, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37294348

RESUMO

Reference ranges provide a powerful tool for diagnostic decision-making in clinical medicine and are enormously valuable for understanding normality in pre-clinical scientific research that uses in vivo models. As yet, there are no published reference ranges for electrocardiography (ECG) in the laboratory mouse. The first mouse-specific reference ranges for the assessment of electrical conduction are reported herein generated from an ECG dataset of unprecedented scale. International Mouse Phenotyping Consortium data from over 26,000 conscious or anesthetized C57BL/6N wildtype control mice were stratified by sex and age to develop robust ECG reference ranges. Interesting findings include that heart rate and key elements from the ECG waveform (RR-, PR-, ST-, QT-interval, QT corrected, and QRS complex) demonstrate minimal sexual dimorphism. As expected, anesthesia induces a decrease in heart rate and was shown for both inhalation (isoflurane) and injectable (tribromoethanol) anesthesia. In the absence of pharmacological, environmental, or genetic challenges, we did not observe major age-related ECG changes in C57BL/6N-inbred mice as the differences in the reference ranges of 12-week-old compared to 62-week-old mice were negligible. The generalizability of the C57BL/6N substrain reference ranges was demonstrated by comparison with ECG data from a wide range of non-IMPC studies. The close overlap in data from a wide range of mouse strains suggests that the C57BL/6N-based reference ranges can be used as a robust and comprehensive indicator of normality. We report a unique ECG reference resource of fundamental importance for any experimental study of cardiac function in mice.


Assuntos
Eletrocardiografia , Técnicas Eletrofisiológicas Cardíacas , Camundongos , Animais , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos
6.
Environ Sci Technol ; 57(26): 9459-9473, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37327355

RESUMO

Carbon capture and storage (CCS) is an important component in many national net-zero strategies. Ensuring that CO2 can be safely and economically stored in geological systems is critical. To date, CCS research has focused on the physiochemical behavior of CO2, yet there has been little consideration of the subsurface microbial impact on CO2 storage. However, recent discoveries have shown that microbial processes (e.g., methanogenesis) can be significant. Importantly, methanogenesis may modify the fluid composition and the fluid dynamics within the storage reservoir. Such changes may subsequently reduce the volume of CO2 that can be stored and change the mobility and future trapping systematics of the evolved supercritical fluid. Here, we review the current knowledge of how microbial methanogenesis could impact CO2 storage, including the potential scale of methanogenesis and the range of geologic settings under which this process operates. We find that methanogenesis is possible in all storage target types; however, the kinetics and energetics of methanogenesis will likely be limited by H2 generation. We expect that the bioavailability of H2 (and thus potential of microbial methanogenesis) will be greatest in depleted hydrocarbon fields and least within saline aquifers. We propose that additional integrated monitoring requirements are needed for CO2 storage to trace any biogeochemical processes including baseline, temporal, and spatial studies. Finally, we suggest areas where further research should be targeted in order to fully understand microbial methanogenesis in CO2 storage sites and its potential impact.


Assuntos
Dióxido de Carbono , Água Subterrânea , Carbono
7.
Commun Biol ; 6(1): 626, 2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301944

RESUMO

Genome editing with CRISPR-associated (Cas) proteins holds exceptional promise for "correcting" variants causing genetic disease. To realize this promise, off-target genomic changes cannot occur during the editing process. Here, we use whole genome sequencing to compare the genomes of 50 Cas9-edited founder mice to 28 untreated control mice to assess the occurrence of S. pyogenes Cas9-induced off-target mutagenesis. Computational analysis of whole-genome sequencing data detects 26 unique sequence variants at 23 predicted off-target sites for 18/163 guides used. While computationally detected variants are identified in 30% (15/50) of Cas9 gene-edited founder animals, only 38% (10/26) of the variants in 8/15 founders validate by Sanger sequencing. In vitro assays for Cas9 off-target activity identify only two unpredicted off-target sites present in genome sequencing data. In total, only 4.9% (8/163) of guides tested have detectable off-target activity, a rate of 0.2 Cas9 off-target mutations per founder analyzed. In comparison, we observe ~1,100 unique variants in each mouse regardless of genome exposure to Cas9 indicating off-target variants comprise a small fraction of genetic heterogeneity in Cas9-edited mice. These findings will inform future design and use of Cas9-edited animal models as well as provide context for evaluating off-target potential in genetically diverse patient populations.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Camundongos , Animais , Genoma , Mutação , Mutagênese
8.
Commun Biol ; 6(1): 435, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081156

RESUMO

Topologically associating domain (TAD) boundaries partition the genome into distinct regulatory territories. Anecdotal evidence suggests that their disruption may interfere with normal gene expression and cause disease phenotypes1-3, but the overall extent to which this occurs remains unknown. Here we demonstrate that targeted deletions of TAD boundaries cause a range of disruptions to normal in vivo genome function and organismal development. We used CRISPR genome editing in mice to individually delete eight TAD boundaries (11-80 kb in size) from the genome. All deletions examined resulted in detectable molecular or organismal phenotypes, which included altered chromatin interactions or gene expression, reduced viability, and anatomical phenotypes. We observed changes in local 3D chromatin architecture in 7 of 8 (88%) cases, including the merging of TADs and altered contact frequencies within TADs adjacent to the deleted boundary. For 5 of 8 (63%) loci examined, boundary deletions were associated with increased embryonic lethality or other developmental phenotypes. For example, a TAD boundary deletion near Smad3/Smad6 caused complete embryonic lethality, while a deletion near Tbx5/Lhx5 resulted in a severe lung malformation. Our findings demonstrate the importance of TAD boundary sequences for in vivo genome function and reinforce the critical need to carefully consider the potential pathogenicity of noncoding deletions affecting TAD boundaries in clinical genetics screening.


Assuntos
Cromatina , Genoma , Animais , Camundongos , Cromatina/genética , Fenótipo
9.
BMC Biol ; 21(1): 22, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737727

RESUMO

BACKGROUND: Microphthalmia, anophthalmia, and coloboma (MAC) spectrum disease encompasses a group of eye malformations which play a role in childhood visual impairment. Although the predominant cause of eye malformations is known to be heritable in nature, with 80% of cases displaying loss-of-function mutations in the ocular developmental genes OTX2 or SOX2, the genetic abnormalities underlying the remaining cases of MAC are incompletely understood. This study intended to identify the novel genes and pathways required for early eye development. Additionally, pathways involved in eye formation during embryogenesis are also incompletely understood. This study aims to identify the novel genes and pathways required for early eye development through systematic forward screening of the mammalian genome. RESULTS: Query of the International Mouse Phenotyping Consortium (IMPC) database (data release 17.0, August 01, 2022) identified 74 unique knockout lines (genes) with genetically associated eye defects in mouse embryos. The vast majority of eye abnormalities were small or absent eyes, findings most relevant to MAC spectrum disease in humans. A literature search showed that 27 of the 74 lines had previously published knockout mouse models, of which only 15 had ocular defects identified in the original publications. These 12 previously published gene knockouts with no reported ocular abnormalities and the 47 unpublished knockouts with ocular abnormalities identified by the IMPC represent 59 genes not previously associated with early eye development in mice. Of these 59, we identified 19 genes with a reported human eye phenotype. Overall, mining of the IMPC data yielded 40 previously unimplicated genes linked to mammalian eye development. Bioinformatic analysis showed that several of the IMPC genes colocalized to several protein anabolic and pluripotency pathways in early eye development. Of note, our analysis suggests that the serine-glycine pathway producing glycine, a mitochondrial one-carbon donator to folate one-carbon metabolism (FOCM), is essential for eye formation. CONCLUSIONS: Using genome-wide phenotype screening of single-gene knockout mouse lines, STRING analysis, and bioinformatic methods, this study identified genes heretofore unassociated with MAC phenotypes providing models to research novel molecular and cellular mechanisms involved in eye development. These findings have the potential to hasten the diagnosis and treatment of this congenital blinding disease.


Assuntos
Anoftalmia , Coloboma , Anormalidades do Olho , Microftalmia , Humanos , Camundongos , Animais , Anormalidades do Olho/genética , Anoftalmia/genética , Microftalmia/genética , Coloboma/genética , Camundongos Knockout , Desenvolvimento Embrionário/genética , Fenótipo , Olho , Mamíferos
10.
Sci Rep ; 12(1): 20791, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456625

RESUMO

We searched a database of single-gene knockout (KO) mice produced by the International Mouse Phenotyping Consortium (IMPC) to identify candidate ciliopathy genes. We first screened for phenotypes in mouse lines with both ocular and renal or reproductive trait abnormalities. The STRING protein interaction tool was used to identify interactions between known cilia gene products and those encoded by the genes in individual knockout mouse strains in order to generate a list of "candidate ciliopathy genes." From this list, 32 genes encoded proteins predicted to interact with known ciliopathy proteins. Of these, 25 had no previously described roles in ciliary pathobiology. Histological and morphological evidence of phenotypes found in ciliopathies in knockout mouse lines are presented as examples (genes Abi2, Wdr62, Ap4e1, Dync1li1, and Prkab1). Phenotyping data and descriptions generated on IMPC mouse line are useful for mechanistic studies, target discovery, rare disease diagnosis, and preclinical therapeutic development trials. Here we demonstrate the effective use of the IMPC phenotype data to uncover genes with no previous role in ciliary biology, which may be clinically relevant for identification of novel disease genes implicated in ciliopathies.


Assuntos
Ciliopatias , Camundongos , Animais , Camundongos Knockout , Ciliopatias/genética , Técnicas de Inativação de Genes , Cílios/genética , Bases de Dados Factuais , Proteínas do Tecido Nervoso , Proteínas de Ciclo Celular
11.
Genome Med ; 14(1): 119, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229886

RESUMO

BACKGROUND: The diagnostic rate of Mendelian disorders in sequencing studies continues to increase, along with the pace of novel disease gene discovery. However, variant interpretation in novel genes not currently associated with disease is particularly challenging and strategies combining gene functional evidence with approaches that evaluate the phenotypic similarities between patients and model organisms have proven successful. A full spectrum of intolerance to loss-of-function variation has been previously described, providing evidence that gene essentiality should not be considered as a simple and fixed binary property. METHODS: Here we further dissected this spectrum by assessing the embryonic stage at which homozygous loss-of-function results in lethality in mice from the International Mouse Phenotyping Consortium, classifying the set of lethal genes into one of three windows of lethality: early, mid, or late gestation lethal. We studied the correlation between these windows of lethality and various gene features including expression across development, paralogy and constraint metrics together with human disease phenotypes. We explored a gene similarity approach for novel gene discovery and investigated unsolved cases from the 100,000 Genomes Project. RESULTS: We found that genes in the early gestation lethal category have distinct characteristics and are enriched for genes linked with recessive forms of inherited metabolic disease. We identified several genes sharing multiple features with known biallelic forms of inborn errors of the metabolism and found signs of enrichment of biallelic predicted pathogenic variants among early gestation lethal genes in patients recruited under this disease category. We highlight two novel gene candidates with phenotypic overlap between the patients and the mouse knockouts. CONCLUSIONS: Information on the developmental period at which embryonic lethality occurs in the knockout mouse may be used for novel disease gene discovery that helps to prioritise variants in unsolved rare disease cases.


Assuntos
Embrião de Mamíferos , Genes Letais , Animais , Feminino , Homozigoto , Humanos , Camundongos , Camundongos Knockout , Fenótipo , Gravidez
12.
Dis Model Mech ; 15(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36125045

RESUMO

Model organism (MO) research provides a basic understanding of biology and disease due to the evolutionary conservation of the molecular and cellular language of life. MOs have been used to identify and understand the function of orthologous genes, proteins, cells and tissues involved in biological processes, to develop and evaluate techniques and methods, and to perform whole-organism-based chemical screens to test drug efficacy and toxicity. However, a growing richness of datasets and the rising power of computation raise an important question: How do we maximize the value of MOs? In-depth discussions in over 50 virtual presentations organized by the National Institutes of Health across more than 10 weeks yielded important suggestions for improving the rigor, validation, reproducibility and translatability of MO research. The effort clarified challenges and opportunities for developing and integrating tools and resources. Maintenance of critical existing infrastructure and the implementation of suggested improvements will play important roles in maintaining productivity and facilitating the validation of animal models of human biology and disease.


Assuntos
Evolução Biológica , Animais , Humanos , Filogenia , Reprodutibilidade dos Testes
13.
J Leukoc Biol ; 112(5): 1285-1295, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36044375

RESUMO

The HIV-1 often evades a robust antiretroviral-mediated immune response, leading to persistent infection within anatomically privileged sites including the CNS. Continuous low-level infection occurs in the presence of effective antiretroviral therapy (ART) in CD4+ T cells and mononuclear phagocytes (MP; monocytes, macrophages, microglia, and dendritic cells). Within the CNS, productive viral infection is found exclusively in microglia and meningeal, perivascular, and choroidal macrophages. MPs serve as the principal viral CNS reservoir. Animal models have been developed to recapitulate natural human HIV-1 infection. These include nonhuman primates, humanized mice, EcoHIV, and transgenic rodent models. These models have been used to study disease pathobiology, antiretroviral and immune modulatory agents, viral reservoirs, and eradication strategies. However, each of these models are limited to specific component(s) of human disease. Indeed, HIV-1 species specificity must drive therapeutic and cure studies. These have been studied in several model systems reflective of latent infections, specifically in MP (myeloid, monocyte, macrophages, microglia, and histiocyte cell) populations. Therefore, additional small animal models that allow productive viral replication to enable viral carriage into the brain and the virus-susceptible MPs are needed. To this end, this review serves to outline animal models currently available to study myeloid brain reservoirs and highlight areas that are lacking and require future research to more effectively study disease-specific events that could be useful for viral eradication studies both in and outside the CNS.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Camundongos , Humanos , Antirretrovirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , Encéfalo , Modelos Animais de Doenças , Reservatórios de Doenças
14.
Dis Model Mech ; 15(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35758026

RESUMO

Retinitis pigmentosa (RP), a retinal degenerative disease, is the leading cause of heritable blindness. Previously, we described that Arap1-/- mice develop a similar pattern of photoreceptor degeneration. Arap1 is an Arf-directed GTPase-activating protein shown to modulate actin cytoskeletal dynamics. Curiously, Arap1 expression was detected in Müller glia and retinal pigment epithelium (RPE), but not the photoreceptors themselves. In this study, we generated conditional knockout mice for Müller glia/RPE, Müller glia and RPE via targeting Rlbp1, Glast and Vmd2 promoters, respectively, to drive Cre recombinase expression to knock out Arap1. Vmd2-Cre Arap1tm1c/tm1c and Rlbp1-Cre Arap1tm1c/tm1c mice, but not Glast-Cre Arap1tm1c/tm1c mice, recapitulated the phenotype originally observed in germline Arap1-/- mice. Mass spectrometry analysis of human ARAP1 co-immunoprecipitation identified candidate binding partners of ARAP1, revealing potential interactants involved in phagocytosis, cytoskeletal composition, intracellular trafficking and endocytosis. Quantification of outer segment phagocytosis in vivo demonstrated a clear phagocytic defect in Arap1-/- mice compared to Arap1+/+ controls. We conclude that Arap1 expression in RPE is necessary for photoreceptor survival due to its indispensable function in RPE phagocytosis. This article has an associated First Person interview with the first author of the paper.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Camundongos , Camundongos Knockout , Fagocitose , Retina/metabolismo , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Retinose Pigmentar/metabolismo
15.
Pain ; 163(6): 1139-1157, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35552317

RESUMO

ABSTRACT: Identifying the genetic determinants of pain is a scientific imperative given the magnitude of the global health burden that pain causes. Here, we report a genetic screen for nociception, performed under the auspices of the International Mouse Phenotyping Consortium. A biased set of 110 single-gene knockout mouse strains was screened for 1 or more nociception and hypersensitivity assays, including chemical nociception (formalin) and mechanical and thermal nociception (von Frey filaments and Hargreaves tests, respectively), with or without an inflammatory agent (complete Freund's adjuvant). We identified 13 single-gene knockout strains with altered nocifensive behavior in 1 or more assays. All these novel mouse models are openly available to the scientific community to study gene function. Two of the 13 genes (Gria1 and Htr3a) have been previously reported with nociception-related phenotypes in genetically engineered mouse strains and represent useful benchmarking standards. One of the 13 genes (Cnrip1) is known from human studies to play a role in pain modulation and the knockout mouse reported herein can be used to explore this function further. The remaining 10 genes (Abhd13, Alg6, BC048562, Cgnl1, Cp, Mmp16, Oxa1l, Tecpr2, Trim14, and Trim2) reveal novel pathways involved in nociception and may provide new knowledge to better understand genetic mechanisms of inflammatory pain and to serve as models for therapeutic target validation and drug development.


Assuntos
Nociceptividade , Dor , Animais , Adjuvante de Freund/toxicidade , Camundongos , Camundongos Knockout , Dor/genética , Medição da Dor
16.
PLoS One ; 17(4): e0266967, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35476839

RESUMO

INTRODUCTION: Reduced rates of help seeking by those who self-harmed during the COVID-19 pandemic have been reported. OBJECTIVES: To understand changes in healthcare service contacts for self-harm during the COVID-19 pandemic across primary, emergency and secondary care. METHODS: This retrospective cohort study used routine electronic healthcare data for Wales, United Kingdom, from 2016 to March 14, 2021. Population-based data from primary care, emergency departments and hospital admissions were linked at individual-level. All Welsh residents aged ≥10 years over the study period were included in the study. Primary, emergency and secondary care contacts with self-harm at any time between 2016 and March 14, 2021 were identified. Outcomes were counts, incidence, prevalence and proportion of self-harm contacts relative to all contacts in each and all settings, as well as the proportion of people contacting one or more settings with self-harm. Weekly trends were modelled using generalised estimated equations, with differences between 2020 (to March 2021) and comparison years 2016-2018 (to March 2017-2019) quantified using difference in differences, from which mean rate of odds ratios (µROR) across years was reported. RESULTS: The study included 3,552,210 individuals over the study period. Self-harm contacts reduced across services in March and December 2020 compared to previous years. Primary care contacts with self-harm reduced disproportionately compared to non-self-harm contacts (µROR = 0.7, p<0.05), while their proportion increased in emergency departments during April 2020 (µROR = 1.3, p<0.05 in 2/3 comparison years) and hospital admissions during April-May 2020 (µROR = 1.2, p<0.05 in 2/3 comparison years). Despite this, those who self-harmed in April 2020 were more likely to be seen in primary care than other settings compared to previous years (µROR = 1.2, p<0.05). A lower proportion of those with self-harm contacts in emergency departments were subsequently admitted to hospital in December 2020 compared to previous years (µROR = 0.5, p<0.05). CONCLUSIONS: These findings suggest that those who self-harmed during the COVID-19 pandemic may have been less likely to seek help, and those who did so faced more stringent criteria for admission. Communications encouraging those who self-harm to seek help during pandemics may be beneficial. However, this needs to be supported by maintained provision of mental health services.


Assuntos
COVID-19 , Comportamento Autodestrutivo , COVID-19/epidemiologia , Atenção à Saúde , Registros Eletrônicos de Saúde , Humanos , Pandemias , Estudos Retrospectivos , Comportamento Autodestrutivo/epidemiologia , Comportamento Autodestrutivo/psicologia , Comportamento Autodestrutivo/terapia , Reino Unido/epidemiologia , País de Gales/epidemiologia
17.
Mamm Genome ; 33(1): 203-212, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34313795

RESUMO

The Mutant Mouse Resource and Research Center (MMRRC) Program is the pre-eminent public national mutant mouse repository and distribution archive in the USA, serving as a national resource of mutant mice available to the global scientific community for biomedical research. Established more than two decades ago with grants from the National Institutes of Health (NIH), the MMRRC Program supports a Consortium of regionally distributed and dedicated vivaria, laboratories, and offices (Centers) and an Informatics Coordination and Service Center (ICSC) at three academic teaching and research universities and one non-profit genetic research institution. The MMRRC Program accepts the submission of unique, scientifically rigorous, and experimentally valuable genetically altered and other mouse models donated by academic and commercial scientists and organizations for deposition, maintenance, preservation, and dissemination to scientists upon request. The four Centers maintain an archive of nearly 60,000 mutant alleles as live mice, frozen germplasm, and/or embryonic stem (ES) cells. Since its inception, the Centers have fulfilled 13,184 orders for mutant mouse models from 9591 scientists at 6626 institutions around the globe. Centers also provide numerous services that facilitate using mutant mouse models obtained from the MMRRC, including genetic assays, microbiome analysis, analytical phenotyping and pathology, cryorecovery, mouse husbandry, infectious disease surveillance and diagnosis, and disease modeling. The ICSC coordinates activities between the Centers, manages the website (mmrrc.org) and online catalog, and conducts communication, outreach, and education to the research community. Centers preserve, secure, and protect mutant mouse lines in perpetuity, promote rigor and reproducibility in scientific experiments using mice, provide experiential training and consultation in the responsible use of mice in research, and pursue cutting edge technologies to advance biomedical studies using mice to improve human health. Researchers benefit from an expansive list of well-defined mouse models of disease that meet the highest standards of rigor and reproducibility, while donating investigators benefit by having their mouse lines preserved, protected, and distributed in compliance with NIH policies.


Assuntos
Pesquisa Biomédica , Modelos Animais de Doenças , Camundongos , National Institutes of Health (U.S.) , Animais , Humanos , Camundongos/genética , Reprodutibilidade dos Testes , Estados Unidos
18.
R Soc Open Sci ; 8(11): 211482, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34786203

RESUMO

The white-winged flufftail is listed as critically endangered, and limited knowledge about the species' ecology has been identified as a limiting factor to effectively conserving the bird. Little is known about the vegetation inhabited by the white-winged flufftail, which hampers the identification and management of its habitat. This study presents a fine-scale classification and description of the vegetation of wetland sites where the bird is known to be present. A plant phytosociological study was conducted to describe the plant communities and vegetation structure of the habitat. Three sites were selected at Verloren Valei Nature Reserve and two at Middelpunt Wetland, Mpumalanga, South Africa, shortly after the white-winged flufftail breeding season. A total of 60 sample plots were placed within the study sites, where all plant species present were recorded and identified. Other aspects such as plant height, water depth and anthropogenic influences were also documented. A modified TWINSPAN analysis resulted in the identification of three sub-communities that can be grouped into one major community. The Cyperaceae, Asteraceae and Poaceae families dominate the vegetation, with the sedges Carex austro-africana and Cyperus denudatus being dominant, and the grasses Leersia hexandra and Arundinella nepalensis co-dominant. The broad habitat structure consisted of medium to tall herbaceous plants (0.5-0.7 m) with shallow slow-flowing water.

19.
Nat Commun ; 12(1): 6021, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654818

RESUMO

The mammalian brain relies on neurochemistry to fulfill its functions. Yet, the complexity of the brain metabolome and its changes during diseases or aging remain poorly understood. Here, we generate a metabolome atlas of the aging wildtype mouse brain from 10 anatomical regions spanning from adolescence to old age. We combine data from three assays and structurally annotate 1,547 metabolites. Almost all metabolites significantly differ between brain regions or age groups, but not by sex. A shift in sphingolipid patterns during aging related to myelin remodeling is accompanied by large changes in other metabolic pathways. Functionally related brain regions (brain stem, cerebrum and cerebellum) are also metabolically similar. In cerebrum, metabolic correlations markedly weaken between adolescence and adulthood, whereas at old age, cross-region correlation patterns reflect decreased brain segregation. We show that metabolic changes can be mapped to existing gene and protein brain atlases. The brain metabolome atlas is publicly available ( https://mouse.atlas.metabolomics.us/ ) and serves as a foundation dataset for future metabolomic studies.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Metaboloma , Animais , Cerebelo/metabolismo , Feminino , Masculino , Redes e Vias Metabólicas , Metabolômica , Camundongos , Esfingolipídeos
20.
Ann Transl Med ; 9(15): 1274, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34532411

RESUMO

BACKGROUND: Ceroid lipofuscinosis type 8 belongs to a heterogenous group of vision and life-threatening neurodegenerative diseases, neuronal ceroid lipofuscinosis (NCL). Effective therapy is limited to a single drug for treatment of ceroid lipofuscinosis type 2, necessitating animal disease models to facilitate further therapeutic development. Murine models are advantageous for therapeutic development due to easy genetic manipulation and rapid breeding, however appropriate genetic models need to be identified and characterized before being used for therapy testing. To date, murine models of ocular disease associated with ceroid lipofuscinosis type 8 have only been characterized in motor neuron degeneration mice. METHODS: Cln8-/- mice were produced by CRISPR/Cas9 genome editing through the International Mouse Phenotyping Consortium. Ophthalmic examination, optical coherence tomography, electroretinography, and ocular histology was performed on Cln8-/- mice and controls at 16 weeks of age. Quantification of all retinal layers, retinal pigmented epithelium, and the choriocapillaris was performed using images acquired with ocular coherence tomography and planimetry of histologic sections. Necropsy was performed to investigate concurrent systemic abnormalities. Clinical correlation with human patients with CLN8-associated retinopathy is provided. RESULTS: Retinal degeneration characterized by retinal pigment epithelium mottling, scattered drusen, and retinal vascular attenuation was noted in all Cln8-/- mice. Loss of inner and outer photoreceptor segment demarcation was noted on optical coherence tomography, with significant thinning of the whole retina (P=1e-9), outer nuclear layer (P=1e-9), and combined photoreceptor segments (P=1e-9). A global reduction in scotopic and photopic electroretinographic waveforms was noted in all Cln8-/- mice. Slight thickening of the inner plexiform layer (P=0.02) and inner nuclear layer (P=0.004), with significant thinning of the whole retina (P=0.03), outer nuclear layer (P=0.01), and outer photoreceptor segments (P=0.001) was appreciated on histologic sections. Scattered lipid vacuoles were noted in splenic red pulp of all Cln8-/- mice, though no gross systemic abnormalities were detected on necropsy. Retinal findings are consistent with those seen in patients with ceroid lipofuscinosis type 8. CONCLUSIONS: This study provides detailed clinical characterization of retinopathy in adult Cln8-/- mice. Findings suggest that Cln8-/- mice may provide a useful murine model for development of novel therapeutics needed for treating ocular disease in patients with ceroid lipofuscinosis type 8.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...