Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone ; 148: 115962, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33862262

RESUMO

Incidences of low-trauma fractures among osteopenic women may be related to changes in bone quality. In this blinded, prospective-controlled study, compositional and heterogeneity contributors of bone quality to fracture risk were examined. We hypothesize that Raman spectroscopy can differentiate between osteopenic women with one or more fractures (cases) from women without fractures (controls). This study involved the Raman spectroscopic analysis of cortical and cancellous bone composition using iliac crest biopsies obtained from 59-cases and 59-controls, matched for age (62.0 ± 7.5 and 61.7 ± 7.3 years, respectively, p = 0.38) and hip bone mineral density (BMD, 0.827 ± 0.083 and 0.823 ± 0.072 g/cm3, respectively, p = 0.57). Based on aggregate univariate case-control and odds ratio based logistic regression analyses, we discovered two Raman ratiometric parameters that were predictive of past fracture risk. Specifically, 1244/1268 and 1044/959 cm-1 ratios, were identified as the most differential aspects of bone quality in cortical cases with odds ratios of 0.617 (0.406-0.938 95% CI, p = 0.024) and 1.656 (1.083-2.534 95% CI, p = 0.020), respectively. Both 1244/1268 and 1044/959 cm-1 ratios exhibited moderate sensitivity (59.3-64.4%) but low specificity (49.2-52.5%). These results suggest that the organization of mineralized collagen fibrils were significantly altered in cortical cases compared to controls. In contrast, compositional and heterogeneity parameters related to mineral/matrix ratios, B-type carbonate substitutions, and mineral crystallinity, were not significantly different between cases and controls. In conclusion, a key outcome of this study is the significant odds ratios obtained for two Raman parameters (1244/1268 and 1044/959 cm-1 ratios), which from a diagnostic perspective, may assist in the screening of osteopenic women with suspected low-trauma fractures. One important implication of these findings includes considering the possibility that changes in the organization of collagen compositional structure plays a far greater role in postmenopausal women with osteopenic fractures.


Assuntos
Fraturas Ósseas , Análise Espectral Raman , Idoso , Densidade Óssea , Estudos de Casos e Controles , Colágeno , Feminino , Fraturas Ósseas/diagnóstico por imagem , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos
2.
Tissue Eng Part C Methods ; 27(5): 287-295, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33726570

RESUMO

Quantitative diffuse reflectance spectroscopy (DRS) was developed for label-free, noninvasive, and real-time assessment of implanted tissue-engineered devices manufactured from primary human oral keratinocytes (six batches in two 5-patient cohorts). Constructs were implanted in a murine model for 1 and 3 weeks. DRS evaluated construct success in situ using optical absorption (hemoglobin concentration and oxygenation, attributed to revascularization) and optical scattering (attributed to cellular density and layer thickness). Destructive pre- and postimplantation histology distinguished experimental control from stressed constructs, whereas noninvasive preimplantation measures of keratinocyte glucose consumption and residual glucose in spent culture media did not. In constructs implanted for 1 week, DRS distinguished control due to stressed and compromised from healthy constructs. In constructs implanted for 3 weeks, DRS identified constructs with higher postimplantation success. These results suggest that quantitative DRS is a promising, clinically compatible technology for rapid, noninvasive, and localized tissue assessment to characterize tissue-engineered construct success in vivo. Impact statement Despite the recent advance in tissue engineering and regenerative medicine, there is still a lack of nondestructive tools to longitudinally monitor the implanted tissue-engineered devices. In this study, we demonstrate the potential of quantitative diffuse reflectance spectroscopy as a clinically viable technique for noninvasive, label-free, and rapid characterization of graft success in situ.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Animais , Contagem de Células , Humanos , Queratinócitos , Camundongos
3.
Tissue Eng Part C Methods ; 25(5): 305-313, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30973066

RESUMO

Many conventional methods to assess engineered tissue morphology and viability are destructive techniques with limited utility for tissue constructs intended for implantation in patients. Sterile label-free optical molecular imaging methods analyzed tissue endogenous fluorophores without staining, noninvasively and quantitatively assessing engineered tissue, in lieu of destructive assessment methods. The objective of this study is to further investigate label-free optical metrics and their correlation with destructive methods. Tissue-engineered constructs (n = 33 constructs) fabricated with primary human oral keratinocytes (n = 10 patients) under control, thermal stress, and rapamycin treatment manufacturing conditions exhibited a range of tissue viability states, as evaluated by quantitative histology scoring, WST-1 assay, Ki-67 immunostaining imaging, and label-free optical molecular imaging methods. Both histology sections of fixed tissues and cross-sectioned label-free optical images of living tissues provided quantitative spatially selective information on local tissue morphology, but optical methods noninvasively characterized both local tissue morphology and cellular viability at the same living tissue site. Furthermore, optical metrics noninvasively assessed living tissue viability with a statistical significance consistent with the destructive tissue assays WST-1 and histology. Over the range of cell viability states created experimentally, optical metrics noninvasively and quantitatively characterized living tissue viability and correlated with the destructive WST-1 tissue assay. By providing, under sterile conditions, noninvasive metrics that were comparable with conventional destructive tissue assays, label-free optical molecular imaging has the potential to monitor and assess engineered tissue construct viability before surgical implantation.


Assuntos
Imagem Óptica , Engenharia Tecidual/métodos , Sobrevivência de Tecidos , Sobrevivência Celular , Humanos , Queratinócitos/citologia , Imagem Molecular , Coloração e Rotulagem , Alicerces Teciduais/química
4.
Tissue Eng Part C Methods ; 24(4): 214-221, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29448894

RESUMO

Fluorescence lifetime sensing has been shown to noninvasively characterize the preimplantation health and viability of engineered tissue constructs. However, current practices to monitor postimplantation construct integration are either qualitative (visual assessment) or destructive (tissue histology). We employed label-free fluorescence lifetime spectroscopy for quantitative, noninvasive optical assessment of engineered tissue constructs that were implanted into a murine model. The portable system was designed to be suitable for intravital measurements and included a handheld probe to precisely and rapidly acquire data at multiple sites per construct. Our model tissue constructs were manufactured from primary human cells to simulate patient variability based on a standard protocol, and half of the manufactured constructs were stressed to create a range of health states. Secreted amounts of three cytokines that relate to cellular viability were measured in vitro to assess preimplantation construct health: interleukin-8 (IL-8), human ß-defensin 1 (hBD-1), and vascular endothelial growth factor (VEGF). Preimplantation cytokine secretion ranged from 1.5 to 33.5 pg/mL for IL-8, from 3.4 to 195.0 pg/mL for hBD-1, and from 0.1 to 154.3 pg/mL for VEGF. In vivo optical sensing assessed constructs at 1 and 3 weeks postimplantation. We found that at 1 week postimplantation, in vivo optical parameters correlated with in vitro preimplantation secretion levels of all three cytokines (p < 0.05). This correlation was not observed in optical measurements at 3 weeks postimplantation when histology showed that the constructs had re-epithelialized, independent of preimplantation health state, supporting the lack of a correlation. These results suggest that clinical optical diagnostic tools based on label-free fluorescence lifetime sensing of endogenous tissue fluorophores could noninvasively monitor postimplantation integration of engineered tissues.


Assuntos
Citocinas/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Queratinócitos/transplante , Microscopia de Fluorescência/métodos , Mucosa Bucal/transplante , Engenharia Tecidual/métodos , Animais , Sobrevivência Celular , Feminino , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos SCID , Mucosa Bucal/citologia , Mucosa Bucal/metabolismo , Alicerces Teciduais , Transplante Heterólogo
5.
J Surg Res ; 209: 174-177, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28032556

RESUMO

BACKGROUND: Angiogenesis, the formation of blood vessels, is a critical aspect of wound healing. Disorders of wound healing are often characterized by lack of angiogenesis, a condition frequently observed in aging and diabetic patients. Current techniques for assessing blood at injury sites are limited to contrast-imaging, including angiography. However, these techniques do not directly observe oxygenation of blood and are not amenable to serial evaluation. A multimodal noninvasive reflectance and Raman spectrometer have been proposed to help clinicians as a point-of-care tool to interrogate local angiogenesis and tissue architecture, respectively. The spectrometer system is a rapid, noninvasive, and label-free technology well-suited for the clinical environment. MATERIALS AND METHODS: To demonstrate feasibility, the spectrometer system was used to interrogate angiogenesis serially over 9 wk as a result of heterotopic ossification (HO) development in a validated murine model. End-stage HO was confirmed by micro-computed tomography. RESULTS: Our preliminary results suggest that reflectance spectroscopy can be used to delineate vessel formation and that pathologic wounds may be characterized by unique spectra. In our model, HO formed at sites 1-3, whereas sites 4 and 5 did not have radiographic evidence of HO. CONCLUSIONS: A point-of-care system like that demonstrated here shows potential as a noninvasive tool to assess local angiogenesis and tissue architecture that may allow for timely intervention in a clinical setting.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Neovascularização Fisiológica , Análise Espectral Raman/métodos , Cicatrização , Microtomografia por Raio-X/métodos , Animais , Camundongos
6.
Bone ; 84: 222-229, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26769006

RESUMO

Bone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as osteogenesis imperfecta (OI). The purpose of this study was to investigate the role of Scl-Ab on bone quality by determining bone material composition and tissue-level mechanical properties in normal wild type (WT) tissue, as well as mice with a typical OI Gly➔Cys mutation (Brtl/+) in type I collagen. Rapidly growing (3-week-old) and adult (6-month-old) WT and Brtl/+ mice were treated for 5weeks with Scl-Ab. Fluorescent guided tissue-level bone composition analysis (Raman spectroscopy) and biomechanical testing (nanoindentation) were performed at multiple tissue ages. Scl-Ab increased mineral to matrix in adult WT and Brtl/+ at tissue ages of 2-4wks. However, no treatment related changes were observed in mineral to matrix levels at mid-cortex, and elastic modulus was not altered by Scl-Ab at any tissue age. Increased mineral-to-matrix was phenotypically observed in adult Brtl/+ OI mice (at tissue ages>3wks) and rapidly growing Brtl/+ (at tissue ages>4wks) mice compared to WT. At identical tissue ages defined by fluorescent labels, adult mice had generally lower mineral to matrix ratios and a greater elastic modulus than rapidly growing mice, demonstrating that bone matrix quality can be influenced by animal age and tissue age alike. In summary, these data suggest that Scl-Ab alters the matrix chemistry of newly formed bone while not affecting the elastic modulus, induces similar changes between Brtl/+ and WT mice, and provides new insight into the interaction between tissue age and animal age on bone quality.


Assuntos
Envelhecimento/patologia , Anticorpos/uso terapêutico , Osso e Ossos/patologia , Glicoproteínas/imunologia , Osteogênese Imperfeita/tratamento farmacológico , Osteogênese Imperfeita/patologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Anticorpos/farmacologia , Matriz Óssea/efeitos dos fármacos , Matriz Óssea/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Módulo de Elasticidade/efeitos dos fármacos , Feminino , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Fêmur/patologia , Genótipo , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos Endogâmicos C57BL , Minerais/metabolismo
7.
J Biomed Opt ; 20(8): 80501, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26263412

RESUMO

Calciphylaxis is a painful, debilitating, and premorbid condition, which presents as calcified vasculature and soft tissues. Traditional diagnosis of calciphylaxis lesions requires an invasive biopsy, which is destructive, time consuming, and often leads to exacerbation of the condition and infection. Furthermore, it is difficult to find small calcifications within a large wound bed. To address this need, a noninvasive diagnostic tool may help clinicians identify ectopic calcified mineral and determine the disease margin. We propose Raman spectroscopy as a rapid, point-of-care, noninvasive, and label-free technology to detect calciphylaxis mineral. Debrided calciphylactic tissue was collected from six patients and assessed by microcomputed tomography (micro-CT). Micro-CT confirmed extensive deposits in three specimens, which were subsequently examined with Raman spectroscopy. Raman spectra confirmed that deposits were consistent with carbonated apatite, consistent with the literature. Raman spectroscopy shows potential as a noninvasive technique to detect calciphylaxis in a clinical environment.


Assuntos
Apatitas/metabolismo , Calciofilaxia/diagnóstico , Calciofilaxia/metabolismo , Cálcio/metabolismo , Sensibilidade e Especificidade , Análise Espectral Raman/métodos , Biomarcadores/metabolismo , Humanos , Reprodutibilidade dos Testes , Coloração e Rotulagem
8.
Biomaterials ; 35(25): 6667-76, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24854093

RESUMO

Nonlinear optical molecular imaging and quantitative analytic methods were developed to non-invasively assess the viability of tissue-engineered constructs manufactured from primary human cells. Label-free optical measures of local tissue structure and biochemistry characterized morphologic and functional differences between controls and stressed constructs. Rigorous statistical analysis accounted for variability between human patients. Fluorescence intensity-based spatial assessment and metabolic sensing differentiated controls from thermally-stressed and from metabolically-stressed constructs. Fluorescence lifetime-based sensing differentiated controls from thermally-stressed constructs. Unlike traditional histological (found to be generally reliable, but destructive) and biochemical (non-invasive, but found to be unreliable) tissue analyses, label-free optical assessments had the advantages of being both non-invasive and reliable. Thus, such optical measures could serve as reliable manufacturing release criteria for cell-based tissue-engineered constructs prior to human implantation, thereby addressing a critical regulatory need in regenerative medicine.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Engenharia Tecidual , Diferenciação Celular , Sobrevivência Celular , Estudos Transversais , Humanos , Processamento de Imagem Assistida por Computador , Queratinócitos/química , Mucosa Bucal/química , Mucosa Bucal/citologia , Alicerces Teciduais/química
9.
Methods Cell Biol ; 114: 457-88, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23931519

RESUMO

Fluorescence lifetime imaging microscopy (FLIM) is a method for measuring fluorophore lifetimes with microscopic spatial resolution, providing a useful tool for cell biologists to detect, visualize, and investigate structure and function of biological systems. In this chapter, we begin by introducing the basic theory of fluorescence lifetime, including the characteristics of fluorophore decay, followed by a discussion of factors affecting fluorescence lifetimes and the potential advantages of fluorescence lifetime as a source of image contrast. Experimental methods for creating lifetime maps, including both time- and frequency-domain experimental approaches, are then introduced. Then, FLIM data analysis methods are discussed, including rapid lifetime determination, multiexponential fitting, Laguerre polynomial fitting, and phasor plot analysis. After, data analysis methods are introduced that improve lifetime precision of FLIM maps based upon optimal virtual gating and total variation denoising. The chapter concludes by highlighting several recent FLIM applications for quantitative biological imaging, including Förster resonance energy transfer-FLIM, fluorescence correlation spectroscopy-FLIM, multispectral-FLIM, and multiphoton-FLIM.


Assuntos
Análise de Célula Única/métodos , Algoritmos , Interpretação Estatística de Dados , Difusão , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Cinética , Análise dos Mínimos Quadrados , Microscopia de Fluorescência/métodos , Mitose , Estômatos de Plantas/metabolismo , Transporte Proteico , Espectrometria de Fluorescência
10.
Biomed Opt Express ; 5(1): 9-15, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24466472

RESUMO

Pancreatic adenocarcinoma has a five-year survival rate of less than 6%. This low survival rate is attributed to the lack of accurate detection methods, which limits diagnosis to late-stage disease. Here, an in vivo pilot study assesses the feasibility of optical spectroscopy to improve clinical detection of pancreatic adenocarcinoma. During surgery on 6 patients, we collected spectrally-resolved reflectance and fluorescence in vivo. Site-matched in vivo and ex vivo data agreed qualitatively and quantitatively. Quantified differences between adenocarcinoma and normal tissues in vivo were consistent with previous results from a large ex vivo data set. Thus, optical spectroscopy is a promising method for the improved diagnosis of pancreatic cancer in vivo.

11.
Biomed Opt Express ; 4(12): 2828-34, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24409383

RESUMO

In a pilot study, multimodal optical spectroscopy coupled with quantitative tissue-optics models distinguished intraductal papillary mucinous neoplasm (IPMN), a common precursor to pancreatic cancer, from normal tissues in freshly excised human pancreas. A photon-tissue interaction (PTI) model extracted parameters associated with cellular nuclear size and refractive index (from reflectance spectra) and extracellular collagen content (from fluorescence spectra). The results suggest that tissue optical spectroscopy has the potential to characterize pre-cancerous neoplasms in human pancreatic tissues.

12.
Opt Express ; 18(21): 21612-21, 2010 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-20941059

RESUMO

A photon-tissue interaction (PTI) model was developed and employed to analyze 96 pairs of reflectance and fluorescence spectra from freshly excised human pancreatic tissues. For each pair of spectra, the PTI model extracted a cellular nuclear size parameter from the measured reflectance, and the relative contributions of extracellular and intracellular fluorophores to the intrinsic fluorescence. The results suggest that reflectance and fluorescence spectroscopies have the potential to quantitatively distinguish among pancreatic tissue types, including normal pancreatic tissue, pancreatitis, and pancreatic adenocarcinoma.


Assuntos
Óptica e Fotônica , Pâncreas/patologia , Espectrometria de Fluorescência/métodos , Adenocarcinoma/patologia , Idoso , Núcleo Celular/metabolismo , Feminino , Humanos , Luz , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/patologia , Pancreatite/patologia , Fótons
13.
Biomed Opt Express ; 1(2): 574-586, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21258491

RESUMO

A fiber-optic system was developed to rapidly acquire tissue fluorescence wavelength-time matrices (WTMs) with high signal-to-noise ratio (SNR). The essential system components (473 nm microchip laser operating at 3 kHz repetition frequency, fiber-probe assemblies, emission monochromator, photomultiplier tube, and digitizer) were assembled into a compact and clinically-compatible unit. Data were acquired from fluorescence standards and tissue-simulating phantoms to test system performance. Fluorescence decay waveforms with SNR > 100 at the decay curve peak were obtained in less than 30 ms. With optimized data transfer and monochromator stepping functions, it should be feasible to acquire a full WTM at 5 nm emission wavelength intervals over a 200 nm range in under 2 seconds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...