Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Radiat Res ; 202(3): 565-579, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39074819

RESUMO

Victims of a radiation terrorist event will include pregnant women and unborn fetuses. Mitochondrial dysfunction and oxidative stress are key pathogenic factors of fetal radiation injury. The goal of this preclinical study is to investigate the efficacy of mitigating fetal radiation injury by maternal administration of the mitochondrial-targeted gramicidin S (GS)-nitroxide radiation mitigator JP4-039. Pregnant female C57BL/6NTac mice received 3 Gy total-body irradiation (TBI) at mid-gestation embryonic day 13.5 (E13.5). Using novel time-and-motion-resolved 4D in utero magnetic resonance imaging (4D-uMRI), we found TBI caused extensive injury to the fetal brain that included cerebral hemorrhage, loss of cerebral tissue, and hydrocephalus with excessive accumulation of cerebrospinal fluid (CSF). Histopathology of the fetal mouse brain showed broken cerebral vessels and elevated apoptosis. Further use of novel 4D Oxy-wavelet MRI capable of probing in vivo mitochondrial function in intact brain revealed a significant reduction of mitochondrial function in the fetal brain after 3 Gy TBI. This was validated by ex vivo Oroboros mitochondrial respirometry. One day after TBI (E14.5) maternal administration of JP4-039, which passes through the placenta, significantly reduced fetal brain radiation injury and improved fetal brain mitochondrial respiration. Treatment also preserved cerebral brain tissue integrity and reduced cerebral hemorrhage and cell death. JP4-039 administration following irradiation resulted in increased survival of pups. These findings indicate that JP4-039 can be deployed as a safe and effective mitigator of fetal radiation injury from mid-gestational in utero ionizing radiation exposure.


Assuntos
Feto , Mitocôndrias , Irradiação Corporal Total , Animais , Feminino , Gravidez , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Mitocôndrias/metabolismo , Camundongos , Irradiação Corporal Total/efeitos adversos , Feto/efeitos da radiação , Feto/efeitos dos fármacos , Lesões por Radiação/tratamento farmacológico , Lesões por Radiação/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Encéfalo/efeitos da radiação , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Encéfalo/embriologia , Protetores contra Radiação/farmacologia , Óxidos de Nitrogênio , Lesões Experimentais por Radiação/tratamento farmacológico , Lesões Experimentais por Radiação/diagnóstico por imagem , Lesões Experimentais por Radiação/patologia , Imageamento por Ressonância Magnética
2.
J Cereb Blood Flow Metab ; : 271678X241262127, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886874

RESUMO

Hypertension is a major risk factor for both stroke and cognitive impairment, but it is unclear whether it may specifically affect post-stroke cognitive impairment. We assessed the effect of hypertension and/or stroke on brain injury, cognitive outcome, and the brain transcriptomic profile. C57BL/6J mice (n = 117; 3-5 mo.) received s.c. infusion of either saline or angiotensin II followed by sham surgery or photothrombotic stroke targeting the prefrontal cortex seven days later. Cognitive function was assessed with the Barnes maze and RNA sequencing was used to quantify transcriptomic changes in the brain. Angiotensin II treatment produced spontaneous hemorrhaging after stroke. In the Barnes maze, hypertensive mice that received stroke surgery had an increased escape latency compared to other groups (day 3: hypertensive + stroke = 166.6 ± 6.0 s vs. hypertensive + sham = 122.8 ± 13.8 s vs. normotensive + stroke = 139.9 ± 10.1 s vs. normotensive + sham = 101.9 ± 16.7 s), consistent with impaired cognition. RNA sequencing revealed >1500 differentially expressed genes related to neuroinflammation in hypertensive + stroke vs. normotensive + stroke, which included genes associated with apoptosis, microRNAs, autophagy, anti-cognitive biomarkers and Wnt signaling. Overall, we show that the combination of hypertension and stroke resulted in greater learning impairment and brain injury.

3.
Adv Exp Med Biol ; 1441: 167-183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884711

RESUMO

Formation of the vertebrate heart with its complex arterial and venous connections is critically dependent on patterning of the left-right axis during early embryonic development. Abnormalities in left-right patterning can lead to a variety of complex life-threatening congenital heart defects. A highly conserved pathway responsible for left-right axis specification has been uncovered. This pathway involves initial asymmetric activation of a nodal signaling cascade at the embryonic node, followed by its propagation to the left lateral plate mesoderm and activation of left-sided expression of the Pitx2 transcription factor specifying visceral organ asymmetry. Intriguingly, recent work suggests that cardiac laterality is encoded by intrinsic cell and tissue chirality independent of Nodal signaling. Thus, Nodal signaling may be superimposed on this intrinsic chirality, providing additional instructive cues to pattern cardiac situs. The impact of intrinsic chirality and the perturbation of left-right patterning on myofiber organization and cardiac function warrants further investigation. We summarize recent insights gained from studies in animal models and also some human clinical studies in a brief overview of the complex processes regulating cardiac asymmetry and their impact on cardiac function and the pathogenesis of congenital heart defects.


Assuntos
Padronização Corporal , Cardiopatias Congênitas , Coração , Humanos , Animais , Coração/embriologia , Coração/fisiologia , Padronização Corporal/genética , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/fisiopatologia , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Transdução de Sinais , Regulação da Expressão Gênica no Desenvolvimento , Proteína Nodal/metabolismo , Proteína Nodal/genética
4.
Adv Exp Med Biol ; 1441: 719-738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884745

RESUMO

Left-right patterning is among the least well understood of the three axes defining the body plan, and yet it is no less important, with left-right patterning defects causing structural birth defects with high morbidity and mortality, such as complex congenital heart disease, biliary atresia, or intestinal malrotation. The cell signaling pathways governing left-right asymmetry are highly conserved and involve multiple components of the TGF-ß superfamily of cell signaling molecules. Central to left-right patterning is the differential activation of Nodal on the left, and BMP signaling on the right. In addition, a plethora of other cell signaling pathways including Shh, FGF, and Notch also contribute to the regulation of left-right patterning. In vertebrate embryos such as the mouse, frog, or zebrafish, the specification of left-right identity requires the left-right organizer (LRO) containing cells with motile and primary cilia that mediate the left-sided propagation of Nodal signaling, followed by left-sided activation of Lefty and then Pitx2, a transcription factor that specifies visceral organ asymmetry. While this overall scheme is well conserved, there are striking species differences, including the finding that motile cilia do not play a role in left-right patterning in some vertebrates. Surprisingly, the direction of heart looping, one of the first signs of organ left-right asymmetry, was recently shown to be specified by intrinsic cell chirality, not Nodal signaling, possibly a reflection of the early origin of Nodal signaling in radially symmetric organisms. How this intrinsic chirality interacts with downstream molecular pathways regulating visceral organ asymmetry will need to be further investigated to elucidate how disturbance in left-right patterning may contribute to complex CHD.


Assuntos
Padronização Corporal , Transdução de Sinais , Animais , Humanos , Camundongos , Padronização Corporal/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Determinação Direita-Esquerda/genética , Fatores de Determinação Direita-Esquerda/metabolismo
5.
Adv Exp Med Biol ; 1441: 947-961, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884763

RESUMO

Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease (CHD) with underdevelopment of left-sided heart structures. While previously uniformly fatal, surgical advances now provide highly effective palliation that allows most HLHS patients to survive their critical CHD. Nevertheless, there remains high morbidity and mortality with high risk of heart failure. As hemodynamic compromise from restricted aortic blood flow has been suggested to underlie the poor LV growth, this suggests the possibility of prenatal fetal intervention to recover LV growth. As such interventions have yielded ambiguous results, the optimization of therapy will require more mechanistic insights into the developmental etiology for HLHS. Clinical studies have shown high heritability for HLHS, with an oligogenic etiology indicated in conjunction with genetic heterogeneity. This is corroborated with the recent recovery of mutant mice with HLHS. With availability-induced pluripotent stem cell (iPSC)-derived cardiomyocytes from HLHS mice and patients, new insights have emerged into the cellular and molecular etiology for the LV hypoplasia in HLHS. Cell proliferation defects were observed in conjunction with metaphase arrest and the disturbance of Hippo-YAP signaling. The left-sided restriction of the ventricular hypoplasia may result from epigenetic perturbation of pathways regulating left-right patterning. These findings suggest new avenues for fetal interventions with therapies using existing drugs that target the Hippo-YAP pathway and/or modulate epigenetic regulation.


Assuntos
Modelos Animais de Doenças , Síndrome do Coração Esquerdo Hipoplásico , Transdução de Sinais , Síndrome do Coração Esquerdo Hipoplásico/genética , Síndrome do Coração Esquerdo Hipoplásico/patologia , Síndrome do Coração Esquerdo Hipoplásico/metabolismo , Síndrome do Coração Esquerdo Hipoplásico/fisiopatologia , Animais , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo
6.
medRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38699300

RESUMO

Cerebrospinal fluid (CSF) circulation has recently been shown to be important in nutrient distribution, waste removal, and neurogenesis. Increased CSF volumes are frequently observed in congenital heart disease (CHD) and are associated with neurodevelopmental deficits. This suggests prolonged perturbation to the CSF system and possible interference to its homeostatic function, which may contribute to the neurodevelopmental deficits in CHD. CSF flow has yet to be studied in CHD patients, but the pulsatile flow of CSF throughout the brain is driven mainly by cardiopulmonary circulation. Given the underlying heart defects in CHD, the cardiopulmonary circulatory mechanisms in CHD might be impaired with resultant perturbation on the CSF circulation. In this study, we determine whether CSF flow, using MRI measurements of static and dynamic pulsatile flow, is abnormal in youths with CHD compared to healthy controls in relation to executive cognitive function. CSF flow measurements were obtained on a total of 58 child and young adult participants (CHD=20, healthy controls = 38). The CSF flow was measured across the lumen of the Aqueduct of Sylvius using cardiac-gated phase-contrast MRI at 3.0T. Static pulsatility was characterized as anterograde and retrograde peak velocities, mean velocity, velocity variance measurements, and dynamic pulsatility calculated as each participant's CSF flow deviation from the study cohort's consensus flow measured with root mean squared deviation (RMSD) were obtained. The participants had neurocognitive assessments for executive function with focus on inhibition, cognitive flexibility, and working memory domains. The CHD group demonstrated greater dynamic pulsatility (higher overall flow RMSD over the entire CSF flow cycle) compared to controls (p=0.0353), with no difference detected in static pulsatility measures. However, lower static CSF flow pulsatility (anterograde peak velocity: p=0.0323) and lower dynamic CSF flow pulsatility (RMSD: p=0.0181) predicted poor inhibitory executive function outcome. Taken together, while the whole CHD group exhibited higher dynamic CSF flow pulsatility compared to controls, the subset of CHD subjects with relatively reduced static and dynamic CSF flow pulsatility had the worst executive functioning, specifically the inhibition domain. These findings suggest that altered CSF flow pulsatility may be central to not only brain compensatory mechanisms but can also drive cognitive impairment in CHD. Further studies are needed to investigate possible mechanistic etiologies of aberrant CSF pulsatility (i.e. primary cardiac hemodynamic disturbances, intrinsic brain vascular stiffness, altered visco-elastic properties of tissue, or glial-lymphatic disturbances), which can result in acquired small vessel brain injury (including microbleeds and white matter hyperintensities).

7.
medRxiv ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38712165

RESUMO

Life expectancy continues to increase in the high-income world due to advances in medical care; however, quality of life declines with increasing age due to normal aging processes. Current research suggests that various aspects of aging are genetically modulated and thus may be slowed via genetic modification. Here, we show evidence for epigenetic modulation of the aging process in the brain from over 1800 individuals as part of the Framingham Heart Study. We investigated the methylation of genes in the protocadherin (PCDH) clusters, including the alpha (PCHDA), beta (PCDHB), and gamma (PCDHG) clusters. Reduced PCDHG, elevated PCDHA, and elevated PCDHB methylation levels were associated with substantial reductions in the rate of decline of regional white matter volume as well as certain cognitive skills, independent of overall accelerated or retarded aging as estimated by a DNA clock. These results are likely due to the different effects of the expression of genes in the alpha, beta, and gamma PCHD clusters and suggest that experience-based aging processes related to a decline in regional brain volume and select cognitive skills may be slowed via targeted epigenetic modifications.

8.
Annu Rev Genomics Hum Genet ; 25(1): 309-327, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38724024

RESUMO

Congenital heart disease (CHD) can affect up to 1% of live births, and despite abundant evidence of a genetic etiology, the genetic landscape of CHD is still not well understood. A large-scale mouse chemical mutagenesis screen for mutations causing CHD yielded a preponderance of cilia-related genes, pointing to a central role for cilia in CHD pathogenesis. The genes uncovered by the screen included genes that regulate ciliogenesis and cilia-transduced cell signaling as well as many that mediate endocytic trafficking, a cell process critical for both ciliogenesis and cell signaling. The clinical relevance of these findings is supported by whole-exome sequencing analysis of CHD patients that showed enrichment for pathogenic variants in ciliome genes. Surprisingly, among the ciliome CHD genes recovered were many that encoded direct protein-protein interactors. Assembly of the CHD genes into a protein-protein interaction network yielded a tight interactome that suggested this protein-protein interaction may have functional importance and that its disruption could contribute to the pathogenesis of CHD. In light of these and other findings, we propose that an interactome enriched for ciliome genes may provide the genomic context for the complex genetics of CHD and its often-observed incomplete penetrance and variable expressivity.


Assuntos
Cílios , Cardiopatias Congênitas , Cílios/patologia , Cílios/genética , Cílios/metabolismo , Humanos , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Animais , Camundongos , Mutação , Transdução de Sinais , Mapas de Interação de Proteínas
9.
bioRxiv ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38464057

RESUMO

Poor neurodevelopment is often observed with congenital heart disease (CHD), especially with mutations in chromatin modifiers. Here analysis of mice with hypoplastic left heart syndrome (HLHS) arising from mutations in Sin3A associated chromatin modifier Sap130 , and adhesion protein Pcdha9, revealed neurodevelopmental and neurobehavioral deficits reminiscent of those in HLHS patients. Microcephaly was associated with impaired cortical neurogenesis, mitotic block, and increased apoptosis. Transcriptional profiling indicated dysregulated neurogenesis by REST, altered CREB signaling regulating memory and synaptic plasticity, and impaired neurovascular coupling modulating cerebral blood flow. Many neurodevelopmental/neurobehavioral disease pathways were recovered, including autism and cognitive impairment. These same pathways emerged from genome-wide DNA methylation and Sap130 chromatin immunoprecipitation sequencing analyses, suggesting epigenetic perturbation. Mice with Pcdha9 mutation or forebrain-specific Sap130 deletion without CHD showed learning/memory deficits and autism-like behavior. These novel findings provide mechanistic insights indicating the adverse neurodevelopment in HLHS may involve cell autonomous/nonautonomous defects and epigenetic dysregulation and suggest new avenues for therapy.

10.
Nat Commun ; 15(1): 899, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321013

RESUMO

Antigen-specific regulatory T cells (Tregs) suppress pathogenic autoreactivity and are potential therapeutic candidates for autoimmune diseases such as systemic lupus erythematosus (SLE). Lupus nephritis is associated with autoreactivity to the Smith (Sm) autoantigen and the human leucocyte antigen (HLA)-DR15 haplotype; hence, we investigated the potential of Sm-specific Tregs (Sm-Tregs) to suppress disease. Here we identify a HLA-DR15 restricted immunodominant Sm T cell epitope using biophysical affinity binding assays, then identify high-affinity Sm-specific T cell receptors (TCRs) using high-throughput single-cell sequencing. Using lentiviral vectors, we transduce our lead Sm-specific TCR into Tregs derived from patients with SLE who are anti-Sm and HLA-DR15 positive. Compared with polyclonal mock-transduced Tregs, Sm-Tregs potently suppress Sm-specific pro-inflammatory responses in vitro and suppress disease progression in a humanized mouse model of lupus nephritis. These results show that Sm-Tregs are a promising therapy for SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Camundongos , Animais , Humanos , Linfócitos T Reguladores , Autoantígenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA