Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 11(11)2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34827624

RESUMO

Secondary structure prediction (SSP) of proteins is an important structural biology technique with many applications. There have been ~300 algorithms published in the past seven decades with fierce competition in accuracy. In the first 60 years, the accuracy of three-state SSP rose from ~56% to 81%; after that, it has long stayed at 81-86%. In the 1990s, the theoretical limit of three-state SSP accuracy had been estimated to be 88%. Thus, SSP is now generally considered not challenging or too challenging to improve. However, we found that the limit of three-state SSP might be underestimated. Besides, there is still much room for improving segment-based and eight-state SSPs, but the limits of these emerging topics have not been determined. This work performs large-scale sequence and structural analyses to estimate SSP accuracy limits and assess state-of-the-art SSP methods. The limit of three-state SSP is re-estimated to be ~92%, 4-5% higher than previously expected, indicating that SSP is still challenging. The estimated limit of eight-state SSP is 84-87%. Several proposals for improving future SSP algorithms are made based on our results. We hope that these findings will help move forward the development of SSP and all its applications.


Assuntos
Biologia Computacional , Proteínas , Algoritmos , Estrutura Secundária de Proteína
2.
PLoS One ; 16(7): e0254555, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34260641

RESUMO

The secondary structure prediction (SSP) of proteins has long been an essential structural biology technique with various applications. Despite its vital role in many research and industrial fields, in recent years, as the accuracy of state-of-the-art secondary structure predictors approaches the theoretical upper limit, SSP has been considered no longer challenging or too challenging to make advances. With the belief that the substantial improvement of SSP will move forward many fields depending on it, we conducted this study, which focused on three issues that have not been noticed or thoroughly examined yet but may have affected the reliability of the evaluation of previous SSP algorithms. These issues are all about the sequence homology between or within the developmental and evaluation datasets. We thus designed many different homology layouts of datasets to train and evaluate SSP prediction models. Multiple repeats were performed in each experiment by random sampling. The conclusions obtained with small experimental datasets were verified with large-scale datasets using state-of-the-art SSP algorithms. Very different from the long-established assumption, we discover that the sequence homology between query datasets for training, testing, and independent tests exerts little influence on SSP accuracy. Besides, the sequence homology redundancy between or within most datasets would make the accuracy of an SSP algorithm overestimated, while the redundancy within the reference dataset for extracting predictive features would make the accuracy underestimated. Since the overestimating effects are more significant than the underestimating effect, the accuracy of some SSP methods might have been overestimated. Based on the discoveries, we propose a rigorous procedure for developing SSP algorithms and making reliable evaluations, hoping to bring substantial improvements to future SSP methods and benefit all research and application fields relying on accurate prediction of protein secondary structures.


Assuntos
Biologia Computacional , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...