Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870291

RESUMO

BACKGROUND AND AIMS: NAFLD is the most common form of liver disease worldwide, but only a subset of individuals with NAFLD may progress to NASH. While NASH is an important etiology of HCC, the underlying mechanisms responsible for the conversion of NAFLD to NASH and then to HCC are poorly understood. We aimed to identify genetic risk genes that drive NASH and NASH-related HCC. APPROACH AND RESULTS: We searched genetic alleles among the 24 most significant alleles associated with body fat distribution from a genome-wide association study of 344,369 individuals and validated the top allele in 3 independent cohorts of American and European patients (N=1380) with NAFLD/NASH/HCC. We identified an rs3747579-TT variant significantly associated with NASH-related HCC and demonstrated that rs3747579 is expression quantitative trait loci of a mitochondrial DnaJ Heat Shock Protein Family (Hsp40) Member A3 ( DNAJA3 ). We also found that rs3747579-TT and a previously identified PNPLA3 as a functional variant of NAFLD to have significant additional interactions with NASH/HCC risk. Patients with HCC with rs3747579-TT had a reduced expression of DNAJA3 and had an unfavorable prognosis. Furthermore, mice with hepatocyte-specific Dnaja3 depletion developed NASH-dependent HCC either spontaneously under a normal diet or enhanced by diethylnitrosamine. Dnaja3 -deficient mice developed NASH/HCC characterized by significant mitochondrial dysfunction, which was accompanied by excessive lipid accumulation and inflammatory responses. The molecular features of NASH/HCC in the Dnaja3 -deficient mice were closely associated with human NASH/HCC. CONCLUSIONS: We uncovered a genetic basis of DNAJA3 as a key player of NASH-related HCC.

2.
Biomed J ; 47(2): 100628, 2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37487907

RESUMO

BACKGROUND: DnaJ homolog subfamily A member 3 (DNAJA3), also known as the tumorous imaginal disc (Tid1), is shown to be crucial in T cell development. DNAJA3 functions as a tumor suppressor implicated in lymphocyte development and survival. However, the role of DNAJA3 in B cell development and immune function remains unknown. In this study, we utilized a mouse model of B cell-specific DNAJA3 knockout (CD19-Cre/+; DNAJA3flx/flx) to investigate the physiological function of DNAJA3 in B cell development and immune function. METHODS: We characterized B cell populations in various developmental stages and examined mitochondrial content and function between control and DNAJA3 KO using flow cytometry analysis. DNAJA3 and OXPHOS protein complexes in sorted B cells between mice groups were compared using immunoblot techniques. The activity of B cell blastogenesis in splenocytes was measured by performing CFSE and MTT assays. Furthermore, immunoglobulin production was detected using the ELISA method. RESULTS: DNAJA3 deficiency decreases from pro B cells to immature B cells. The overall B220+ population in the bone marrow and secondary immune organs also decreased. B cell subpopulations B1 (B1b) and B2 significantly decrease. The B cell blastogenesis activity and immunoglobulin production decreased in DNAJA3 KO mice. Mechanistically, DNAJA3 deficiency significantly increases dysfunctional mitochondria activity and decreases mitochondrial mass, membrane potential, and mitochondria respiratory complex proteins. These factors could have influenced B cell differentiation during development, differentiation to antibody-secreting cells, and immune activation. CONCLUSION: Overall, our study provides supportive evidence for the role of DNAJA3 in B cell development and function.

3.
Biomedicines ; 11(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36979874

RESUMO

(1) Background: Cancer stem cells (CSCs) are a small cell population associated with chemoresistance, metastasis and increased mortality rate in oral cancer. Interferon-induced proteins with tetratricopeptide repeats 2 (IFIT2) depletion results in epithelial to mesenchymal transition, invasion, metastasis, and chemoresistance in oral cancer. To date, no study has demonstrated the effect of IFIT2 depletion on the CSC-like phenotype in oral cancer cells. (2) Methods: Q-PCR, sphere formation, Hoechst 33,342 dye exclusion, immunofluorescence staining, and flow cytometry assays were performed to evaluate the expression of the CSC markers in IFIT2-depleted cells. A tumorigenicity assay was adopted to assess the tumor formation ability. Immunohistochemical staining was used to examine the protein levels of IFIT2 and CD24 in oral cancer patients. (3) Results: The cultured IFIT2 knockdown cells exhibited an overexpression of ABCG2 and CD44 and a downregulation of CD24 and gave rise to CSC-like phenotypes. Clinically, there was a positive correlation between IFIT2 and CD24 in the patients. IFIT2high/CD24high/CD44low expression profiles predicted a better prognosis in HNC, including oral cancer. The TNF-α blockade abolished the IFIT2 depletion-induced sphere formation, indicating that TNF-α may be involved in the CSC-like phenotypes in oral cancer. (4) Conclusions: The present study demonstrates that IFIT2 depletion promotes CSC-like phenotypes in oral cancer.

4.
Biochem Pharmacol ; 206: 115327, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36330949

RESUMO

Triple-negative breast cancers (TNBCs) are difficult to cure and currently lack of effective treatment strategies. Cancer stem cells (CSCs) are highly associated with the poor clinical outcome of TNBCs. Thoc1 is a core component of the THO complex (THOC) that regulates the elongation, processing and nuclear export of mRNA. The function of thoc1 in TNBC and whether Thoc1 serves as a drug target are poorly understood. In this study, we demonstrated that thoc1 expression is elevated in TNBC cell lines and human TNBC patient tissues. Knockdown of thoc1 decreased cancer stem cell populations, reduced mammosphere formation, impaired THOC function, and downregulated the expression of stemness-related proteins. Moreover, the thoc1-knockdown 4T1 cells showed less lung metastasis in an orthotopic breast cancer mouse model. Overexpression of Thoc1 promoted TNBC malignancy and the mRNA export of stemness-related genes. Furthermore, treatment of TNBC cells with the natural compound andrographolide reduced the expression of Thoc1 expression, impaired homeostasis of THOC, suppressed CSC properties, and delayed tumor growth in a 4T1-implanted orthotopic mouse model. Andrographolide also reduced the activity of NF-κB, an upstream transcriptional regulator of Thoc1. Notably, thoc1 overexpression attenuates andrographolide-suppressed cellular proliferation. Altogether, our results demonstrate that THOC1 promotes cancer stem cell characteristics of TNBC, and andrographolide is a potential natural compound for eliminating CSCs of TNBCs by downregulating the NF-κB-thoc1 axis.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Neoplásicas , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo
5.
J Chin Med Assoc ; 85(4): 431-437, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35125403

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a type of malignancy characterized by high relapse and recurrence rates in the late stage despite optimal surgical intervention and postoperative chemoradiotherapy. Because the management of relapse following definitive treatment is challenging, accurate risk stratification is of clinical significance to improve treatment outcomes. Circular RNAs (circRNAs) are noncoding RNAs featured with cell-type specificity and high stability, owing to their circular structure, making these molecules excellent biomarkers for a variety of diseases. METHODS: The levels of hsa_circ_0000190 and 0001649 in plasma samples from 30 healthy controls and 66 OSCC patients were determined by droplet digital polymerase chain reaction. The same primer sets were used with PCR to examine the expression of these two circRNAs in cancerous and adjacent normal tissues. A receiver operating characteristics curve was generated to evaluate the diagnostic value. The Kaplan-Meier method with a log-rank test was used for survival analysis. RESULTS: We identified two circRNAs as potential biomarkers for OSCC, showing that the plasma level of hsa_circ_0000190 was significantly decreased in the late stage and marginally correlated with the development of second primary OSCC. We also found that the decreased plasma hsa_circ_0001649 was correlated with the recurrence and poor prognosis of patients. Additionally, we found that high plasma hsa_circ_0000190, but not hsa_circ_0001649, possibly predicted a better response of patients to induction chemotherapy. CONCLUSION: Our study demonstrated the potential of biomarkers in plasma to inform not just the tumor but the entire oral cavity, thereby offering a prediction for early recurrence and second primary OSCC. The plasma circRNAs remain valuable for OSCC, albeit the easy accessibility to the oral cavity.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Biomarcadores , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Humanos , Neoplasias Bucais/terapia , Recidiva Local de Neoplasia , RNA/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço
6.
J Cell Physiol ; 237(3): 1888-1901, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34958118

RESUMO

Advanced glycation end products (AGEs), which are highly reactive molecules resulting from persistent high-glucose levels, can lead to the generation of oxidative stress and cardiac complications. The carboxyl terminus of HSP70 interacting protein (CHIP) has been demonstrated to have a protective role in several diseases, including cardiac complications; however, the role in preventing AGE-induced cardiac damages remains poorly understood. Here, we found that elevated AGE levels impaired cardiac CHIP expression in streptozotocin-induced diabetes and high-fat diet-administered animals, representing AGE exposure models. We used the TUNEL assay, hematoxylin and eosin, Masson's trichrome staining, and western blotting to prove that cardiac injuries were induced in diabetic animals and AGE-treated cardiac cells. Interestingly, our results collectively indicated that CHIP overexpression significantly rescued the AGE-induced cardiac injuries and promoted cell survival. Moreover, CHIP knockdown-mediated stabilization of nuclear factor κB (NFκB) was attenuated by overexpressing CHIP in the cells. Furthermore, co-immunoprecipitation and immunoblot assay revealed that CHIP promotes the ubiquitination and proteasomal degradation of AGE-induced NFκB. Importantly, fluorescence microscopy, a luciferase reporter assay, electrophoretic mobility shift assay, and subcellular fractionation further demonstrated that CHIP overexpression inhibits AGE-induced NFκB nuclear translocation, reduced its binding ability with the promoter sequences of the receptor of AGE, consequently inhibiting the translocation of the receptor AGE to the cell membrane for its proper function. Overall, our current study findings suggest that CHIP can target NFκB for ubiquitin-mediated proteasomal degradation, and thereby potentially rescue AGE-induced cardiac damages.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Produtos Finais de Glicação Avançada , Traumatismos Cardíacos , Complexo de Endopeptidases do Proteassoma , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Produtos Finais de Glicação Avançada/metabolismo , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/genética , NF-kappa B/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação
7.
Bioeng Transl Med ; 6(3): e10234, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589606

RESUMO

Recent studies indicate that umbilical cord stem cells are cytoprotective against several disorders. One critical limitation in using stem cells is reduction in their viability under stressful conditions, such as diabetes. However, the molecular intricacies responsible for diabetic conditions are not fully elucidated. In this study, we found that high glucose (HG) conditions induced loss of chaperone homeostasis, stabilized PTEN, triggered the downstream signaling cascade, and induced apoptosis and oxidative stress in Wharton's jelly derived mesenchymal stem cells (WJMSCs). Increased Carboxyl terminus of Hsc70 interacting protein (CHIP) expression promoted phosphatase and tensin homolog (PTEN) degradation via the ubiquitin-proteasome system and shortened its half-life during HG stress. Docking studies confirmed the interaction of CHIP with PTEN and FOXO3a with the Bim promoter region. Further, it was found that the chaperone system is involved in CHIP-mediated PTEN proteasomal degradation. CHIP depletion stabilizes PTEN whereas PTEN inhibition showed an inverse effect. CHIP overactivation suppressed the binding of FOXO3a with bim. Coculturing CHIP overexpressed WJMSCs suppressed HG-induced apoptosis and oxidative stress in embryo derived cardiac cell lines. CHIP overexpressing and PTEN silenced WJMSCs ameliorated diabetic effects in streptozotocin (STZ) induced diabetic rats and further improved their body weight and heart weight, and rescued from hyperglycemia-induced cardiac injury. Considering these, the current study suggests that CHIP confers resistance to apoptosis and acts as a potentiation factor in WJMSCs to provide protection from degenerative effects of diabetes.

8.
Biomedicines ; 9(9)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34572286

RESUMO

Cancer cells have the metabolic flexibility to adapt to heterogeneous tumor microenvironments. The integrated stress response (ISR) regulates the cellular adaptation response during nutrient stress. However, the issue of how the ISR regulates metabolic flexibility is still poorly understood. In this study, we activated the ISR using salubrinal in cancer cells and found that salubrinal repressed cell growth, colony formation, and migration but did not induce cell death in a glucose-containing condition. Under a glucose-deprivation condition, salubrinal induced cell death and increased the levels of mitochondrial reactive oxygen species (ROS). We found that these effects of salubrinal and glucose deprivation were associated with the upregulation of xCT (SLC7A11), which functions as an antiporter of cystine and glutamate and maintains the level of glutathione to maintain redox homeostasis. The upregulation of xCT did not protect cells from oxidative stress-mediated cell death but promoted it during glucose deprivation. In addition, the supplementation of ROS scavenger N-acetylcysteine and the maintenance of intracellular levels of amino acids via sulfasalazine (xCT inhibitor) or dimethyl-α-ketoglutarate decreased the levels of mitochondrial ROS and protected cells from death. Our results suggested that salubrinal enhances cancer cell death during glucose deprivation through the upregulation of xCT and mitochondrial oxidative stress.

9.
Cancers (Basel) ; 13(1)2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33406664

RESUMO

Tid1, a mitochondrial co-chaperone protein, acts as a tumor suppressor in various cancer types. However, the role of Tid1 in hepatocellular carcinoma (HCC) remains unclear. First, we found that a low endogenous Tid1 protein level was observed in poorly differentiated HCC cell lines. Further, upregulation/downregulation of Tid1 abrogated/promoted the malignancy of human HCC cell lines, respectively. Interestingly, Tid1 negatively modulated the protein level of Nrf2. Tissue assays from 210 surgically resected HCC patients were examined by immunohistochemistry (IHC) analyses. The protein levels of Tid1 in the normal and tumor part of liver tissues were correlated with the clinical outcome of the 210 HCC cases. In multivariate analysis, we discovered that tumor size > 5 cm, multiple tumors, presence of vascular invasion, low Tid1 expression in the non-tumor part, and high Nrf2 expression in the non-tumor part were significant factors associated with worse recurrence-free survival (RFS). A scoring system by integrating the five clinical and pathological factors predicts the RFS among HCC patients after surgical resection. Together, Tid1, serving as a tumor suppressor, has a prognostic role for surgically resected HCC to predict RFS.

10.
PLoS One ; 15(12): e0244791, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33382817

RESUMO

Ageing and chronic diseases lead to muscle loss and impair the regeneration of skeletal muscle. Thus, it's crucial to seek for effective intervention to improve the muscle regeneration. Tid1, a mitochondrial co-chaperone, is important to maintain mitochondrial membrane potential and ATP synthesis. Previously, we demonstrated that mice with skeletal muscular specific Tid1 deficiency displayed muscular dystrophy and postnatal lethality. Tid1 can interact with STAT3 protein, which also plays an important role during myogenesis. In this study, we used GMI, immunomodulatory protein of Ganoderma microsporum, as an inducer in C2C12 myoblast differentiation. We observed that GMI pretreatment promoted the myogenic differentiation of C2C12 myoblasts. We also showed that the upregulation of mitochondria protein Tid1 with the GMI pre-treatment promoted myogenic differentiation ability of C2C12 cells. Strikingly, we observed the concomitant elevation of STAT3 acetylation (Ac-STAT3) during C2C12 myogenesis. Our study suggests that GMI promotes the myogenic differentiation through the activation of Tid1 and Ac-STAT3.


Assuntos
Proteínas Fúngicas/metabolismo , Ganoderma/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Desenvolvimento Muscular/fisiologia , Mioblastos/citologia , Fator de Transcrição STAT3/metabolismo , Acetilação , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células/fisiologia , Proteínas Fúngicas/genética , Proteínas de Choque Térmico HSP40/genética , Camundongos , Camundongos Knockout , Mioblastos/metabolismo , Regulação para Cima
11.
Cancers (Basel) ; 12(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233689

RESUMO

BACKGROUND: Gastric cancer is a common health issue. Deregulated cellular energetics is regarded as a cancer hallmark and mitochondrial dysfunction might contribute to cancer progression. Tid1, a mitochondrial co-chaperone, may play a role as a tumor suppressor in various cancers, but the role of Tid1 in gastric cancers remains under investigated. METHODS: The clinical TCGA online database and immunohistochemical staining for Tid1 expression in tumor samples of gastric cancer patients were analyzed. Tid1 knockdown by siRNA was applied to investigate the role of Tid1 in gastric cancer cells. RESULTS: Low Tid1 protein-expressing gastric cancer patients had a poorer prognosis and higher lymph node invasion than high Tid1-expressing patients. Knockdown of Tid1 did not increase cell proliferation, colony/tumor sphere formation, or chemotherapy resistance in gastric cancer cells. However, Tid1 knockdown increased cell migration and invasion. Moreover, Tid1 knockdown reduced the mtDNA copy number of gastric cancer cells. In addition, the Tid1-galectin-7-MMP-9 axis might be associated with Tid1 knockdown-induced cell migration and invasion of gastric cancer cells. CONCLUSIONS: Tid1 is required for mtDNA maintenance and regulates migration and invasion of gastric cancer cells. Tid1 deletion may be a poor prognostic factor in gastric cancers and could be further investigated for development of gastric cancer treatments.

12.
J Chin Med Assoc ; 83(10): 891-894, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32773584

RESUMO

As of April 15, 2020, the US Food and Drug Administration has granted emergency use authorization to a first saliva test for diagnosis of severe acute respiratory syndrome coronavirus 2 infection, the device developed by RUCDR Infinite Biologics laboratory, Rutgers University. A key feature that distinguishes the saliva-based test from nasopharyngeal or oropharyngeal (throat) swabs is that this kit allows self-collection and can spare healthcare professionals to be at risk during collecting nasopharyngeal or oropharyngeal samples, thereby preserving personal protective equipment for use in patient care rather than sampling and testing. Consequently, broader testing than the current methods of nasal or throat swabs will significantly increase the number of people screening, leading to more effective control of the spread of COVID-19. Nonetheless, a comparison of saliva-based assay with current swab test is needed to understand what and how we can benefit from this newly developed assay. Therefore, in this mini-review article, we aimed to summarize the current and emerging tools, focusing on diagnostic power of different clinical sampling and specimens.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/diagnóstico , Nasofaringe/virologia , Faringe/virologia , Pneumonia Viral/diagnóstico , Saliva/virologia , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Humanos , Pandemias , SARS-CoV-2 , Manejo de Espécimes/métodos
13.
Front Oncol ; 10: 463, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351887

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a highly lethal disease with high-level of epidemic both in the world and Taiwan. Previous studies support that head and neck cancer-initiating cells (HN-CICs), a subpopulation of cancer cells with enhanced stemness properties, contribute to therapy resistance and tumor recurrence. Arsenic trioxide (As2O3; ATO) has shown to be an effective anti-cancer drug targeting acute promyelocytic leukemia (APL). Combinatorial treatment with high dose of ATO and cisplatin (CDDP) exert synergistic apoptotic effects in cancer cell lines of various solid tumors, however, it may cause of significant side effect to the patients. Nevertheless, none has reported the anti-cancerous effect of ATO/CDDP targeting HN-CICs. In this study, we aim to evaluate the low dose combination of ATO with conventional chemo-drugs CDDP treatment on targeting HN-CICs. We first analyzed the inhibitory tumorigenicity of co-treatment with ATO and chemo-drugs on HN-CICs which are enriched from HNSCC cells. We observed that ATO/CDDP therapeutic regimen successfully synergized the cell death on HN-CICs with a Combination Index (CI) <1 by Chou-Talalay's analysis in vitro. Interestingly, the ATO/CDDP regimen also induced exaggerated autophagy on HN-CICs. Additionally, this drug combination strategy also empowered both preventive and therapeutic effect by in vivo xenograft assays. Finally, we provide the underlying molecular mechanisms of ATO-based therapeutic regimen on HN-CICs. Together, low dose of combinatorial ATO/CDDP regimen induced cell death as well as exacerbated autophagy via AMPK-STAT3 mediated pathway in HN-CICs.

15.
Int J Mol Sci ; 22(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396303

RESUMO

Endoplasmic reticulum (ER) stress response is an adaptive program to cope with cellular stress that disturbs the function and homeostasis of ER, which commonly occurs during cancer progression to late stage. Late-stage cancers, mostly requiring chemotherapy, often develop treatment resistance. Chemoresistance has been linked to ER stress response; however, most of the evidence has come from studies that correlate the expression of stress markers with poor prognosis or demonstrate proapoptosis by the knockdown of stress-responsive genes. Since ER stress in cancers usually persists and is essentially not induced by genetic manipulations, we used low doses of ER stress inducers at levels that allowed cell adaptation to occur in order to investigate the effect of stress response on chemoresistance. We found that prolonged tolerable ER stress promotes mesenchymal-epithelial transition, slows cell-cycle progression, and delays the S-phase exit. Consequently, cisplatin-induced apoptosis was significantly decreased in stress-adapted cells, implying their acquisition of cisplatin resistance. Molecularly, we found that proliferating cell nuclear antigen (PCNA) ubiquitination and the expression of polymerase η, the main polymerase responsible for translesion synthesis across cisplatin-DNA damage, were up-regulated in ER stress-adaptive cells, and their enhanced cisplatin resistance was abrogated by the knockout of polymerase η. We also found that a fraction of p53 in stress-adapted cells was translocated to the nucleus, and that these cells exhibited a significant decline in the level of cisplatin-DNA damage. Consistently, we showed that the nuclear p53 coincided with strong positivity of glucose-related protein 78 (GRP78) on immunostaining of clinical biopsies, and the cisplatin-based chemotherapy was less effective for patients with high levels of ER stress. Taken together, this study uncovers that adaptation to ER stress enhances DNA repair and damage tolerance, with which stressed cells gain resistance to chemotherapeutics.


Assuntos
Adaptação Fisiológica , Cisplatino/farmacologia , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Estresse do Retículo Endoplasmático , Neoplasias Bucais/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Dano ao DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , Chaperona BiP do Retículo Endoplasmático , Humanos , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Células Tumorais Cultivadas
16.
Int J Biol Sci ; 15(5): 1080-1090, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31182927

RESUMO

Up-regulation of ASB6 has been previously associated with late-stage and poor prognosis of oral squamous cell carcinoma (OSCC) patients. To explore the cellular and molecular basis of how ASB6 enhances the malignancy of OSCC, we employed the clonogenicity and migration assays, murine pulmonary metastasis model, Western blot, and immunofluorescence microscopy to characterize the phenotypes of OSCC cells with lentiviral-based stable overexpression or knockdown of ASB6. We found that ASB6 overexpression increases, whereas ASB6 knockdown decreases, the potential of tumor-sphere formation, colony formation, and expression of Oct-4 and Nanog. While knockdown of ASB6 decreases cell migration in vitro and lung metastasis in mice, the migratory potential was however not promoted by ASB6 overexpression. ASB6 knockdown down-regulates the level of vimentin, and the loss of filopodia formation became more prominent following CRISPR/Cas9-directed knockout of ASB6. Moreover, ASB6 was up-regulated when cells were grown in selective condition featured with a collateral effect of enhancing intracellular stress, and the level of endoplasmic reticulum (ER) stress was further increased by knockdown of ASB6. Thus, ASB6 may attenuate ER stress that would otherwise accumulate and subsequently impede the potential of cells to acquire or sustain the stemness properties and metastatic capacity, thereby enhancing the malignancy of OSCC by increasing the population of cancer stem or stem-like cells.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Animais , Biomarcadores Tumorais/genética , Western Blotting , Carcinoma de Células Escamosas , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/fisiologia , Imunofluorescência , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Microscopia Confocal , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo
17.
Differentiation ; 107: 35-41, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31176254

RESUMO

Primary liver cancer (PLC) is heterogeneous and it is an aggressive malignancy with a poor prognostic outcome. Current evidence suggests that PLC tumorigenesis is driven by rare subpopulations of cancer stem cells (CSCs), which contribute to tumor initiation, progression, and therapy resistance through particular molecular mechanisms. Energy metabolism and mitochondrial function play an important role in the regulation of cancer stemness and stem cell specifications. Since the role of mitochondrial function as central hubs in cell growth and survival, studies on the critical physiological mechanisms of the liver underlying their therapy-resistant phenotype is important. In this review, we focus on liver CSC-related mitochondrial metabolism that contributes to the liver CSC features, in terms of enhanced drug-resistance and increased tumorigenicity, and to discuss their roles on potential therapies windows for PLC therapies.


Assuntos
Carcinoma Hepatocelular/patologia , Colangiocarcinoma/patologia , Neoplasias Hepáticas/patologia , Mitocôndrias , Células-Tronco Neoplásicas/ultraestrutura , Carcinoma Hepatocelular/metabolismo , Colangiocarcinoma/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas/metabolismo
18.
Neoplasia ; 21(7): 641-652, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31100640

RESUMO

Even with increasing evidence for roles of glycolytic enzymes in controlling cancerous characteristics, the best target of candidate metabolic enzymes for lessening malignancy remains under debate. Pyruvate is a main glycolytic metabolite that could be mainly converted into either lactate by Lactate Dehydrogenase A (LDHA) or acetyl-CoA by Pyruvate Dehydrogenase E1 component α subunit (PDHA1) catalytic complex. In tumor cells, accumulating lactate is produced whereas the conversion of pyruvate into mitochondrial acetyl-CoA is less active compared with their normal counterparts. This reciprocal molecular association makes pyruvate metabolism a potential choice of anti-cancer target. Cellular and molecular changes were herein assayed in Head and Neck Squamous Cell Carcinoma (HNSCC) cells in response to LDHA and PDHA1 loss in vitro, in vivo and in clinic. By using various human cancer databases and clinical samples, LDHA and PDHA1 levels exhibit reversed prognostic roles. In vitro analysis demonstrated that decreased cell growth and motility accompanied by an increased sensitivity to chemotherapeutic agents was found in cells with LDHA loss whereas PDHA1-silencing exhibited opposite phenotypes. At the molecular level, it was found that oncogenic Protein kinase B (PKB/Akt) and Extracellular signal-regulated kinase (ERK) singling pathways contribute to pyruvate metabolism mediated HNSCC cell growth. Furthermore, LDHA/PDHA1 changes in HNSCC cells resulted in a broad metabolic reprogramming while intracellular molecules including polyunsaturated fatty acids and nitrogen metabolism related metabolites underlie the malignant changes. Collectively, our findings reveal the significance of pyruvate metabolic fates in modulating HNSCC tumorigenesis and highlight the impact of metabolic plasticity in HNSCC cells.


Assuntos
Carcinogênese/genética , L-Lactato Desidrogenase/genética , Piruvato Desidrogenase (Lipoamida)/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Glicólise/genética , Xenoenxertos , Humanos , Ácido Láctico/metabolismo , Camundongos , Mitocôndrias/genética , Ácido Pirúvico/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
19.
J Cell Biochem ; 120(10): 16703-16710, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31081962

RESUMO

Myocardial dysfunction is clinically relevant? repercussion that follows sepsis. Tid 1 protein has been implicated in many biological process. However, the role of Tid 1 in lipopolysaccharide (LPS)-induced cardiomyocyte hypertrophy and apoptosis remains elusive. In the current research endeavor, we have elucidated the role of Tid1-S on LPS-induced cardiac hypertrophy and apoptosis. Interestingly, we found that overexpression of Tid1-S suppressed TLR-4, NFATc3, and BNP protein expression which eventually led to inhibition of LPS-induced cardiac hypertrophy. Moreover, Tid1-S overexpression attenuated cellular apoptosis and activated survival proteins p-PI3K and pser473 Akt. Besides this, Tid1-S overexpression enhanced ER-a protein expression. Collectively, our data suggest that Tid1-S plausibly enhance ER-a protein and further activate p-PI3K and p ser473 Akt survival protein expression; which thereby led to attenuation of LPS-induced apoptosis in cardiomyoblast cells. Interestingly, our data suggest that Tid1-S is involved in attenuation of cardiomyoblast cells damages induced by LPS.


Assuntos
Apoptose/efeitos dos fármacos , Cardiomegalia/metabolismo , Receptor alfa de Estrogênio/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Lipopolissacarídeos/toxicidade , Miócitos Cardíacos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
20.
J Cell Physiol ; 234(11): 20128-20138, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30980393

RESUMO

Carboxyl-terminus of Hsc70 interacting protein (CHIP) is a chaperone-dependent E3-ubiquitin ligase with important function in protein quality control system. In the current research endeavor, we have investigated the putative role of CHIP in lipopolysaccharides (LPS)-induced cardiomyopathies. Basically, H9c2 cardiomyoblasts were transfected with CHIP for 24 hr, and thereafter, treated with LPS for 12 hr. Concomitantly, western blot analysis, actin staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and coimmunoprecipitation studies were performed to investigate the underlying intricacies. Interestingly, western blot analysis revealed that the expression of hypertrophy and apoptosis-related proteins were considerably reduced following overexpression of CHIP. Moreover, Actin staining and TUNEL assay further ascertained the attenuation of cardiac hypertrophy and apoptosis following overexpression of CHIP respectively. These aspects instigate the role of CHIP in attenuation of LPS-induced cardiomyopathies. Additionally and importantly, co-immunoprecipitation and western blot studies revealed that CHIP plausibly promotes degradation of nuclear factor of activated T cells 3 (NFATc3) through ubiquitin-proteasomal pathway. Taken together, our study reveals that CHIP attenuates LPS-induced cardiac hypertrophy and apoptosis perhaps by promoting NFATc3 proteasomal degradation.


Assuntos
Apoptose/fisiologia , Cardiomegalia/metabolismo , Fatores de Transcrição NFATC/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Cardiomegalia/induzido quimicamente , Cardiomiopatias/metabolismo , Linhagem Celular , Marcação In Situ das Extremidades Cortadas/métodos , Lipopolissacarídeos/farmacologia , Chaperonas Moleculares/metabolismo , Ratos , Ubiquitina/metabolismo , Ubiquitinação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...