Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298963

RESUMO

A challenge in mimicking tyrosinase activity using model compounds is to reproduce its enantioselectivity. Good enantioselection requires rigidity and a chiral center close to the active site. In this study, the synthesis of a new chiral copper complex, [Cu2(mXPhI)]4+/2+, based on an m-xylyl-bis(imidazole)-bis(benzimidazole) ligand containing a stereocenter with a benzyl residue directly bound on the copper chelating ring, is reported. Binding experiments show that the cooperation between the two metal centers is weak, probably due to steric hindrance given by the benzyl group. The dicopper(II) complex [Cu2(mXPhI)]4+ has catalytic activity in the oxidations of enantiomeric couples of chiral catechols, with an excellent discrimination capability for Dopa-OMe enantiomers and a different substrate dependence, hyperbolic or with substrate inhibition, for the L- or D- enantiomers, respectively. [Cu2(mXPhI)]4+ is active in a tyrosinase-like sulfoxidation of organic sulfides. The monooxygenase reaction requires a reducing co-substrate (NH2OH) and yields sulfoxide with significant enantiomeric excess (e.e.). Experiments with 18O2 and thioanisole yielded sulfoxide with 77% incorporation of 18O, indicating a reaction occurring mostly through direct oxygen transfer from the copper active intermediate to the sulfide. This mechanism and the presence of the chiral center of the ligand in the immediate copper coordination sphere are responsible for the good enantioselectivity observed.


Assuntos
Cobre , Monofenol Mono-Oxigenase , Monofenol Mono-Oxigenase/metabolismo , Cobre/química , Estrutura Molecular , Fenilalanina , Ligantes , Biomimética , Sulfóxidos/química
2.
J Org Chem ; 86(13): 9225-9232, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34081467

RESUMO

The solid-phase synthesis of Gly-Ψ[CH(CF3)NH]-peptides is presented. In order to achieve this goal, the synthesis of Gly-Ψ[CH(CF3)NH]-dipeptides having the C-terminus unprotected, the N-terminus protected as Fmoc- or Teoc-, and possibly side chain functionalities protected with acid-labile protecting groups has been developed. A selected small library of six peptidomimetics, encompassing analogues of biological relevant peptides, have been obtained in high purity.


Assuntos
Peptidomiméticos , Técnicas de Síntese em Fase Sólida , Dipeptídeos , Peptídeos
3.
J Org Chem ; 86(5): 4313-4319, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33599506

RESUMO

We report the first synthesis of the complex amino acid labionin in a fully orthogonally protected and stereopure form. The structure-which incorporates five orthogonal protecting groups and three stereogenic centers-was assembled using two key synthetic steps: (1) a thia-Michael addition for installing the thioether bridge; (2) an electrophilic azidation for creating the central quaternary α-amino acid carbon in a stereochemically pure form. This work is expected to enable the solid phase synthesis of both natural and synthetic analogues labyrinthopeptins.


Assuntos
Aminoácidos , Técnicas de Síntese em Fase Sólida , Sulfetos
5.
Inorg Chem ; 58(14): 8995-9003, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31247811

RESUMO

Recently, we reported on a series of aminomethylene-phosphonate (AMP) analogues, bearing one or two heterocyclic groups on the aminomethylene moiety, as promising Zn(II) chelators. Given the strong Zn(II) binding properties of these compounds, they may find useful applications in metal chelation therapy. With a goal of inhibiting the devastating oxidative damage caused by prion protein in prion diseases, we explored the most promising ligand, {bis[(1H-imidazol-4-yl)methyl]amino}methylphosphonic acid, AMP-(Im)2, 4, as an inhibitor of the oxidative reactivity associated with the Cu(II) complex of prion peptide fragment 84-114. Specifically, we first characterized the Cu(II) complex with AMP-(Im)2 by ultraviolet-visible spectroscopy and electrochemical measurements that indicated the high chemical and electrochemical stability of the complex. Potentiometric pH titration provided evidence of the formation of a stable 1:1 [Cu(II)-AMP-(Im)2]+ complex (ML), with successive binding of a second AMP-(Im)2 molecule yielding ML2 complex [Cu(II)-(AMP-(Im)2)2]+ (log K' = 15.55), and log ß' = 19.84 for ML2 complex. The CuN3O1 ML complex was demonstrated by X-ray crystallography, indicating the thermodynamically stable square pyramidal complex. Chelation of Cu(II) by 4 significantly reduced the oxidation potential of the former. CuCl2 and the 1:2 Cu:AMP-(Im)2 complex showed one-electron redox of Cu(II)/Cu(I) at 0.13 and -0.35 V, respectively. Indeed, 4 was found to be a potent antioxidant that at a 1:1:1 AMP-(Im)2:Cu(II)-PrP84-114 molar ratio almost totally inhibited the oxidation reaction of 4-methylcatechol. Circular dichroism data suggest that this antioxidant activity is due to formation of a ternary, redox inactive Cu(II)-Prp84-114-[AMP-(Im)2] complex. Future studies in prion disease animal models are warranted to assess the potential of 4 to inhibit the devastating oxidative damage caused by PrP.


Assuntos
Cobre/química , Isoxazóis/química , Príons/química , Tetrazóis/química , Modelos Moleculares , Oxirredução , Conformação Proteica
6.
Dalton Trans ; 46(12): 4018-4029, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28271098

RESUMO

A dinuclear copper(ii) complex derived from the chiral N6 ligand (2S,2'S)-N,N'-(ethane-1,2-diyl)bis(2-((1-methyl-1H-imidazol-4-ylmethyl)-amino)-3-(1-trityl-1H-imidazol-4-yl)propanamide) (EHI) was synthesized and studied as a catalyst in stereoselective oxidation reactions. The ligand contains two sets of tridentate binding units, each of them giving rise to a coordination set consisting of a pair of 5- and 6-membered chelate rings, connected by an ethanediamide linker. Stereoselectivity effects were studied in the oxidations of a series of chiral l/d biogenic catechols and the pair of l/d-tyrosine methyl esters, in this case as their phenolate salts. The oxidation of ß-naphthol has also been studied as a model monooxygenase reaction. The catechol oxidation was investigated in a range of substrate concentrations at slightly acidic pH and exhibited a marked dependence on the concentration of the [Cu2EHI]4+ complex. This behavior has been interpreted in terms of an equilibrium between a monomeric and a dimeric form of the catalyst. Binding studies of l- and d-tyrosine were performed as a support for the interpretation of the stereoselectivity effects observed in the reactions. In general, [Cu2EHI]4+ exhibits a binding preference for the l- rather than the d-enantiomer of the substrates, but it appears that in the catecholase reaction the oxidation of the d-isomer occurs at a faster rate than for the l counterpart. The same type of enantio-discriminating behavior is observed in the oxidation of l-/d-tyrosine methyl esters. In this case the reaction produces a complex mixture of products; the main product consisting of a trimeric compound, likely formed by radical coupling reactions, has been isolated and characterized. The oxidation of ß-naphthol yields an additional product of the expected quinone but labeling experiments with 18-O2 show no oxygen incorporation into the product, confirming that the oxidation likely proceeds through a radical mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...