Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(18): 3506-3515, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38683682

RESUMO

The electroabsorption and absorption spectra of eight homoleptic complexes of the general form [M(LL)3]2+ where M = Ru, Fe, and LL = 1,10-phenanthroline (phen), 2,2'-bipyridine (bpy), and 4,4',-(R)2-bpy where R = -OCH3, -CF3, were quantified at 77 K in a butyronitrile glass. Intense metal-to-ligand charge transfer (MLCT) absorption bands were evident in the visible region. Electroabsorption spectra measured with applied electric fields >0.2 MV/cm were analyzed by the two-state Liptay model. Significant light-induced dipole moment changes of Δµâ‡€ = 4-13 D were found consistent with a metal-to-ligand charge transfer (MLCT) excited state comprised an electron localized on a single diimine ligand, [MIII(LL-)(LL)2]*2+, in the initially formed Franck-Condon excited state. A low energy feature evident in the electroabsorption spectra was assigned to a direct singlet-to-triplet MLCT excited state. The identity of the diimine ligand had an unexpected and large impact on these transitions. Analysis relative to the higher energy absorption provides a comparison of spin-allowed and disallowed transitions for first- and second-row transition metal complexes. With the notable exception of [Fe(CF3bpy)3]2+, the change in dipole moment for the 3MLCT excited states was less than or equal to that of the 1MLCT excited states. The charge transfer distances for the iron complexes were generally larger than those for the Ru complexes, a behavior attributed to a smaller degree of iron-diimine coupling in the ground state. A striking result was the sensitivity of the extinction coefficient and spectral profile of the low energy electroabsorption assigned to the identity of the diimine ligand; data that suggests electronic coupling with ligand localized triplet states and high spin metal centered states must be considered when modeling the Franck-Condon excited state.

2.
J Am Chem Soc ; 146(3): 1742-1747, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38193695

RESUMO

The proton-coupled electron transfer (PCET) mechanism for the reaction Mox-OH + e- + H+ → Mred-OH2 was determined through the kinetic resolution of the independent electron transfer (ET) and proton transfer (PT) steps. The reaction of interest was triggered by visible light excitation of [RuII(tpy)(bpy')H2O]2+, RuII-OH2, where tpy is 2,2':6',2″-terpyridine and bpy' is 4,4'-diaminopropylsilatrane-2,2'-bipyridine, anchored to In2O3:Sn (ITO) thin films in aqueous solutions. Interfacial kinetics for the PCET reduction reaction were quantified by nanosecond transient absorption spectroscopy as a function of solution pH and applied potential. Data acquired at pH = 5-10 revealed a stepwise electron transfer-proton transfer (ET-PT) mechanism, while kinetic measurements made below pKa(RuIII-OH/OH2) = 1.3 were used to study the analogous interfacial reaction, where electron transfer was the only mechanistic step. Analysis of this data with a recently reported multichannel kinetic model was used to construct a PCET zone diagram and supported the assignment of an ET-PT mechanism at pH = 5-10. Ultimately, this study represents a unique example among Mox-OH/Mred-OH2 reactivity where the protonation and oxidation states of the intermediate were kinetically and spectrally resolved to firmly establish the PCET mechanism.

3.
ACS Appl Mater Interfaces ; 15(28): 34249-34262, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37417666

RESUMO

Molecular dyes, called sensitizers, with a cis-[Ru(LL)(dcb)(NCS)2] structure, where dcb is 4,4'-(CO2H)2-2,2'-bipyridine and LL is dcb or a different diimine ligand, are among the most optimal for application in dye-sensitized solar cells (DSSCs). Herein, a series of five sensitizers, three bearing two dcb ligands and two bearing one dcb ligand, were anchored to mesoporous thin films of conducting tin-doped indium oxide (ITO) or semiconducting TiO2 nanocrystallites. The number of dcb ligands impacts the surface orientation of the sensitizer; density functional theory (DFT) calculations revealed an ∼1.6 Å smaller distance between the oxide surface and the Ru metal center for sensitizers with two dcb ligands. Interfacial electron transfer kinetics from the oxide material to the oxidized sensitizer were measured as a function of the thermodynamic driving force. Analysis of the kinetic data with Marcus-Gerischer theory indicated that the electron coupling matrix element, Hab, was sensitive to distance and ranged from Hab = 0.23 to 0.70 cm-1, indicative of nonadiabatic electron transfer. The reorganization energies, λ, were also sensitive to the sensitizer location within the electric double layer and were smaller, with one exception, for sensitizers bearing two dcb ligands λ = 0.40-0.55 eV relative to those with one λ = 0.63-0.66 eV, in agreement with dielectric continuum theory. Electron transfer from the oxide to the photoexcited sensitizer was observed when the diimine ligand was more easily reduced than the dcb ligand. Lateral self-exchange "hole hopping" electron transfer between surface-anchored sensitizers was found to be absent for sensitizers with two dcb ligands, while those with only one were found to hop with rates similar to those previously reported in the literature, khh = 47-89 µs-1. Collectively, the kinetic data and analysis reveal that interfacial kinetics are highly sensitive to the surface orientation and sensitizers bearing two dcb ligands are most optimal for practical applications of DSSCs.

4.
ACS Appl Mater Interfaces ; 14(30): 35205-35214, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35862637

RESUMO

A family of three ruthenium bipyridyl rigid-rod compounds of the general form [Ru(bpy)2(LL)](PF6)2 were anchored to mesoporous thin films of tin-doped indium oxide (ITO) nanocrystals. Here, LL is a 4-substituted 2,2-bipyridine (bpy) ligand with varying numbers of conjugated phenylenethynylene bridge units between the bipyridine ring and anchoring group consisting of a bis-carboxylated isophthalic group. The visible absorption spectra and the formal potentials, Eo(RuIII/II), of the surface anchored rigid-rods were insensitive to the presence of the phenylene ethynylene bridge units in 0.1 M tetrabutyl ammonium perchlorate acetonitrile solutions (TBAClO4/CH3CN). The conductive nature of the ITO enabled potentiostatic control of the Fermi level and hence a means to tune the Gibbs free energy change, -ΔG°, for electron transfer from the ITO to the rigid-rods. Pseudo-rate constants for this electron transfer reaction increased as the number of bridge units decreased at a fixed -ΔG°. With the assumption that the reorganization energy, λ, and the electronic coupling matrix element, Hab, were independent of the applied potential, rate constants measured as a function of -ΔG° and analyzed through Marcus-Gerischer theory provided estimates of Hab and λ. In rough accordance with the dielectric continuum theory, λ was found to increase from 0.61 to 0.80 eV as the number of bridge units was increased. In contrast, Hab decreased markedly with distance from 0.54 to 0.11 cm-1, consistent with non-adiabatic electron transfer. Comparative analysis with previously published studies of bridges with an sp3-hybridized carbon indicated that the phenylene ethynylene bridge does not enhance electronic coupling between the oxide and the rigid-rod acceptor. The implications of these findings for practical applications in solar energy conversion are specifically discussed.

5.
J Phys Chem Lett ; 11(3): 702-709, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31917577

RESUMO

In redox-active metal-organic frameworks (MOFs), charge transfer can occur by a redox hopping mechanism, i.e., electron hopping coupled with ion diffusion to balance electroneutrality. To elucidate the correlation between MOF structure and electron and ion diffusion, we prepared three ferrocene-doped MOF (Fc-MOF) films with different pore sizes (15-47 Å) immobilized on conductive substrates. By applying a theoretical model to the chronoamperometric responses of three Fc-MOFs, the electron and ion diffusion coefficients (De ≈ 10-12-10-7 cm2 s-1; Di ≈ 10-16-10-12 cm2 s-1) and electron- and ion-transfer rate constants (ke-hop ≈ 103-107 s-1; ki-hop ≈ 10-3-101 s-1) were quantified independently. Increasing MOF pore size led to an increase in ki-hop and a decrease in ke-hop. The overall charge-transfer rate constant, khop, increased when MOF pore size increased, confirming the ability to enhance charge-transfer rates through control of MOF pore size.

6.
Dalton Trans ; 47(46): 16807-16812, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30431029

RESUMO

Solid-state electrochemiluminescence (ECL) has drawn increasing attention due to its advantages over solution-phase ECL, such as reducing the consumption of expensive reagents and enhancing the ECL signal. Herein we report a ruthenium(ii)-polypyridyl doped zirconium(iv) metal-organic framework (MOF) film, UiO-67-Ru@FTO, for solid-state electrochemiluminescence. With tripropylamine (TPA) as a coreactant, UiO-67-Ru@FTO exhibited high ECL intensity and good stability. A linear relationship was found between the ECL intensity and TPA concentration in a wide range of 0.04-20 mM. Additionally, UiO-67-Ru@FTO was successfully used for dopamine detection, implying its great potential in real-life applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...