RESUMO
Cell-penetrating peptides (CPPs) have been evaluated as enhancers in drug delivery, their addition in medical formulations favors drug absorption allowing obtaining the pharmacological effect with lower doses. In vaccine formulations their inclusion has been also explored with interesting results. Currently mucosal vaccination constitutes a promising alternative with the main advantage of inducing both systemic and mucosal immune responses, which are crucial for control tumors and infections at mucosal tissues. In the present work the nasal immune-enhancing effect of four CPPs was evaluated in Balb/c mice. Animals were intranasally immunized with CPP and the recombinant hepatitis B surface protein (HBsAg) as model antigen. The antibody response in sera and mucosal tissue was measured by ELISA. The IFN-γ secretion response at spleen was also evaluated by ELISPOT and ELISA. Among the CPPs studied one novel peptide stand out by its ability to potentiate the humoral and cellular immune response against the co-administered antigen. Considering that the use of mucosal routes is a promising strategy in vaccination, which are gaining special relevance nowadays in the development of novel candidates against SARS-CoV-2 and other potential emerging respiratory virus, the searching and development of safe mucosal adjuvants constitute a current need.
RESUMO
BACKGROUND: B23/nucleophosmin (B23/NPM1) is an abundant multifunctional protein mainly located in the nucleolus but constantly shuttling between the nucleus and cytosol. As a consequence of its constitutive expression, intracellular dynamics and binding capacities, B23/NPM1 interacts with multiple cellular factors in different cellular compartments, but also with viral proteins from both DNA and RNA viruses. B23/NPM1 influences overall viral replication of viruses like HIV, HBV, HCV, HDV and HPV by playing functional roles in different stages of viral replication including nuclear import, viral genome transcription and assembly, as well as final particle formation. Of note, some virus modify the subcellular localization, stability and/or increases B23/NPM1 expression levels on target cells, probably to foster B23/NPM1 functions in their own replicative cycle. RESULTS: This review summarizes current knowledge concerning the interaction of B23/NPM1 with several viral proteins during relevant human infections. The opportunities and challenges of targeting this well-conserved host protein as a potentially new broad antiviral treatment are discussed in detail. Importantly, although initially conceived to treat cancer, a handful of B23/NPM1 inhibitors are currently available to test on viral infection models. CONCLUSION: As B23/NPM1 partakes in key steps of viral replication and some viral infections remain as unsolved medical needs, an appealing idea may be the expedite evaluation of B23/NPM1 inhibitors in viral infections. Furthermore, worth to be addressed is if the up-regulation of B23/NPM1 protein levels that follows persistent viral infections may be instrumental to the malignant transformation induced by virus like HBV and HCV.
Assuntos
Antivirais/farmacologia , Proteínas Nucleares/metabolismo , Proteínas Virais/metabolismo , Viroses/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , Antivirais/uso terapêutico , Humanos , Terapia de Alvo Molecular/métodos , Proteínas Nucleares/antagonistas & inibidores , Nucleofosmina , Regulação para Cima , Viroses/patologia , Viroses/virologiaRESUMO
A novel therapeutic vaccine for chronic hepatitis B (CHB) treatment comprising the recombinant hepatitis B surface (HBsAg) and nucleocapsid (HBcAg) antigens has been developed. Preclinical and clinical trials (CT) evidenced safety and immunogenicity in animal models as well as in phases I, II, and III clinical trials. A phase I CT has conducted in Cuba in 6 CHB patients refractory or incomplete responders to α-IFN. Patients were immunized ten times every two weeks via. nasal spray, with 100 ug HBsAg and 100 ug HBcAg. Clinical efficacy was monitored by assessing the levels of hepatitis B virus deoxyribonucleic acid (HBV DNA), alanine aminotransferase (ALT), HBeAg, and anti-HBeAg seroconversion as well as by qualitative/ quantitative HBsAg serology during this period. After a 5 year follow-up,HBeAg loss was verified in the three HBeAg (+) patients, in two cases with seroconversion to anti-HBeAg. A reduction to undetectable viral load was observed in 5 out of 6 patients, and in two cases HBsAg seroconversion was also detected. ALT increases above the 2X upper limit of normal (ULN) were only detected in HBeAg (+) patients and associated with HBe antigen loss. All patients had stiffness levels below 7.8 KPa by Fibroscan assessment at the end of this period. Although only a few patients were enrolled in this study, it seems that HeberNasvac may maintain some of the therapeutic effects for a prolonged period. How to cite this article: Fernandez G, Sanchez AL, Jerez E, Anillo LE, Freyre F, Aguiar JA, Leon Y, Cinza Z, Diaz PA, Figueroa N, Muzio V, Nieto GG, Lobaina Y, Aguilar A, Penton E, Aguilar JC. Five-year Follow-up of Chronic Hepatitis B Patients Immunized by Nasal Route with the Therapeutic Vaccine HeberNasvac. Euroasian J Hepatogastroenterol, 2018;8(2):133-139.
RESUMO
The development of therapeutic vaccines against chronic hepatitis B requires the capacity of the formulation to subvert a tolerated immune response as well as the evaluation of histopathological damage resulting from the treatment. In the present study, the dynamicity of induced immune response to hepatitis B surface antigen (HBsAg) was evaluated in transgenic mice that constitutively express the HBsAg gene (HBsAg-tg mice). After immunization with a vaccine candidate containing both surface (HBsAg) and core (HBcAg) antigens of hepatitis B virus (HBV), the effect of vaccination on clearance of circulating HBsAg and the potential histological alterations were examined. Transgenic (tg) and non-transgenic (Ntg) mice were immunized by intranasal (IN) and subcutaneous (SC) routes simultaneously. A control group received phosphate-buffered saline (PBS) by IN route and aluminum by SC route. Positive responses, at both humoral and cellular levels, were obtained after five immunizations in HBsAg-tg mice. Such responses were delayed and of lower intensity in tg mice, compared to vaccinated Ntg mice. Serum IgG response was characterized by a similar IgG subclass pattern. Even when HBsAg-specific CD8+ T cell responses were clearly detectable by gamma-interferon ELISPOT assay, histopathological alterations were not detected in any organ, including the liver and kidneys. Our study demonstrated, that it is possible to subvert the immune tolerance against HBsAg in tg mice, opening a window for new studies to optimize the schedule, dose, and formulation to improve the immune response to the therapeutic vaccine candidate. These results can be considered a safety proof to support clinical developments for the formulation under study. HOW TO CITE THIS ARTICLE: Freyre FM, Blanco A, Trujillo H, Hernández D, García D, Alba JS, Lopez M, Merino N, Lobaina Y, Aguilar JC. Dynamic of Immune Response induced in Hepatitis B Surface Antigen-transgenic Mice Immunized with a Novel Therapeutic Formulation. Euroasian J Hepato-Gastroenterol 2016;6(1):25-30.
RESUMO
Hepatitis B virus (HBV) chronic infections remain a considerable health problem worldwide. The standard therapies have demonstrated limited efficacy, side effects or need life-long treatments. Nowadays therapeutic vaccination is a promising option. Recently, we developed a new vaccine formulation called Nasvac, based on the combination of surface and core antigens from HBV. Clinical trials already performed showed good efficacy in virus control. However, the exact mode of action of Nasvac formulation remains unclear. So far the functional impairment of DCs during persistent HBV infection is a controversial issue. On the other hand, it is known that B cells may function as antigen presenting cells (APC) activating T cells. The hepatitis B core antigen contained in Nasvac vaccine is able to bind and activate a high frequency of naive human B cells. In the present study the surface expression of activation and exhaustion markers on B cells and the subsequent activation of T cells after in vitro stimulation with Nasvac antigens were evaluated in chronic HBV patients and healthy donors. B- and T-cell phenotype and proliferation were assessed by flow cytometry. Our results indicate that in contrast to exhaustions markers B cell activation markers were increased on both study groups after Nasvac stimulation. A shift toward an activation phenotype was observed for both B and T cells. The present work suggests that B cells could act as efficient APCs for Nasvac antigens in humans, which might suggest the use of activated B cells as immunotherapeutic strategy for chronic hepatitis B.
Assuntos
Linfócitos B/imunologia , Vacinas contra Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Doadores de Tecidos , Linfócitos B/citologia , Biomarcadores/metabolismo , Proliferação de Células , Feminino , Humanos , Masculino , Linfócitos T/citologiaRESUMO
Chronic hepatitis B is a major health problem, with more than 350 million people infected worldwide. Available therapies have limited efficacy and require long-term continuous and expensive treatments, which often lead to the selection of resistant viral variants and rarely eliminate the virus. Immunotherapies have been investigated as a promising new approach. Several vaccine formulations have been clinically tested in chronic patients, none of which have clearly demonstrated efficacy so far. In this study we evaluated a new vaccination strategy comprising the simultaneous co-administration by the nasal and parenteral routes of a multicomponent vaccine formulation in BALB/C and HBsAg-transgenic mice. The formulation under study contains the surface and nucleocapsid antigens of the HBV, and was co-administered by the nasal route and three parenteral routes. For parenteral administration we also evaluated the immunogenicity of the antigenic mixture with alum or without the adjuvant. The immune response was evaluated by ELISA and IFN-γ ELISPOT assays. Our results indicate that all variants generated a strong antibody response in the sera against both antigens, but differed in their capacity to induce cellular immune responses against the surface antigen. Mice immunized by the nasal and subcutaneous routes without alum generated the highest IFN-γ-secreting CD8+ T-cell response, and results in this transgenic mouse model showed that there is no need to include alum. In conclusion, our results indicate that the immunization routes have to be carefully selected before carrying out clinical trials to optimize the immune response and promote further clinical development.
Assuntos
Vacinas contra Hepatite B/administração & dosagem , Vacinas contra Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Vacinação/métodos , Adjuvantes Imunológicos/administração & dosagem , Administração Intranasal , Compostos de Alúmen/administração & dosagem , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Injeções Intradérmicas , Injeções Intramusculares , Injeções Subcutâneas , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Linfócitos T/imunologiaRESUMO
It has been defined that strong and multispecific cellular immune responses correlate with a better prognosis during the course of chronic diseases. A cross-enhancing effect on the resulting immune response obtained by the coadministration of recombinant hepatitis B virus (HBV) surface and core Ag was recently observed. With the objective of studying the effect of such Ag on the immune response to coinoculated heterologous Ag and vice versa, several formulations containing the recombinant HBV Ag and a multiepitopic protein (CR3) composed by CTL and Th epitopes from HIV-1 were evaluated by s.c. and mucosal administration. Combinations of two and three Ag were evaluated for cellular and humoral immune responses. The results showed that the best Ag combination for nasal immunization was the mixture comprising the CR3 recombinant HIV protein and both HBV Ag. Similarly, it was also the best formulation for s.c. immunization in aluminium phosphate adjuvant. In conclusion, it is possible to induce a Th1 stimulation of the cellular immune response specific for a HIV-based recombinant protein by formulating this Ag with the recombinant HBV Ag.
Assuntos
Vacinas contra a AIDS/imunologia , Epitopos de Linfócito T/imunologia , HIV-1/imunologia , Antígenos de Superfície da Hepatite B/imunologia , Proteínas Mutantes Quiméricas/imunologia , Células Th1/imunologia , Proteínas Virais/imunologia , Vacinas contra a AIDS/administração & dosagem , Administração Intranasal , Animais , Formação de Anticorpos/efeitos dos fármacos , Formação de Anticorpos/imunologia , Relação Dose-Resposta Imunológica , Sinergismo Farmacológico , Epitopos de Linfócito T/administração & dosagem , Feminino , Antígenos de Superfície da Hepatite B/administração & dosagem , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Mutantes Quiméricas/administração & dosagem , Linfócitos T Citotóxicos/imunologia , Proteínas Virais/administração & dosagemRESUMO
Several adjuvants have been described and tested in humans. However, the aluminum-based adjuvants remain the most widely used component in vaccines today. Emerging data suggest that aluminum phosphate and aluminum hydroxide adjuvants do not promote a strong commitment to the helper T cell type 2 (Th2) pathway when they are coadministered with some Th1 adjuvants. In this regard, subtle differences between both aluminum-based adjuvants have been demonstrated. We have previously shown that subcutaneous immunization, in aluminum phosphate, of a mixture comprising the surface and core antigens of hepatitis B virus (HBV) and the multiepitopic protein CR3 of human immunodeficiency virus type 1 elicits a CR3-specific Th1 immune response. In these experiments, the antigens were adjuvated at the same time. As the final selection of the best adjuvant should be based on experimental evidence, we asked whether aluminum hydroxide allows a better Th1 immune deviation than aluminum phosphate. We also studied several ways to mix the antigens and the impact on CR3-specific interferon (IFN)-gamma secretion. Our findings indicate that aluminum hydroxide allows better Th1 immunodeviation than aluminum phosphate adjuvant for the mixture of HBV antigens and CR3. In addition, CR3-specific IFN-gamma secretion of the various formulations tested was the same irrespective of the order in which the antigens were combined.