Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 177: 115787, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32315899

RESUMO

Space exploration is demanding longer lasting human missions and water resupply from Earth will become increasingly unrealistic. In a near future, the spacecraft water monitoring systems will require technological advances to promptly identify and counteract contingent events of waterborne microbial contamination, posing health risks to astronauts with lowered immune responsiveness. The search for bio-analytical approaches, alternative to those applied on Earth by cultivation-dependent methods, is pushed by the compelling need to limit waste disposal and avoid microbial regrowth from analytical carryovers. Prospective technologies will be selected only if first validated in a flight-like environment, by following basic principles, advantages, and limitations beyond their current applications on Earth. Starting from the water monitoring activities applied on the International Space Station, we provide a critical overview of the nucleic acid amplification-based approaches (i.e., loop-mediated isothermal amplification, quantitative PCR, and high-throughput sequencing) and early-warning methods for total microbial load assessments (i.e., ATP-metry, flow cytometry), already used at a high readiness level aboard crewed space vehicles. Our findings suggest that the forthcoming space applications of mature technologies will be necessarily bounded by a compromise between analytical performances (e.g., speed to results, identification depth, reproducibility, multiparametricity) and detrimental technical requirements (e.g., reagent usage, waste production, operator skills, crew time). As space exploration progresses toward extended missions to Moon and Mars, miniaturized systems that also minimize crew involvement in their end-to-end operation are likely applicable on the long-term and suitable for the in-flight water and microbiological research.


Assuntos
Voo Espacial , Água , Humanos , Estudos Prospectivos , Reprodutibilidade dos Testes , Astronave
2.
Radiat Res ; 190(5): 526-537, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30124374

RESUMO

The roadmap for space exploration foresees longer journeys and further excursions outside low-Earth orbit as well as the establishment of permanent outposts on other celestial bodies, such as the Moon or Mars. The design of spacecrafts and habitats depends heavily on the mission scenario and must consider the radiation protection properties of the structural components as well as dedicated shielding. In fact, short- and long-term effects caused by exposure to cosmic radiation are now considered among the main health risks of space travel. One of the current strategies is to find multifunctional materials that combine excellent mechanical properties with a high shielding effectiveness to minimize the overall load. In this work, the shielding effectiveness of a wide variety of single and multilayer materials of interest for different mission scenarios has been characterized. In the experimental campaign, reference and innovative materials, as well as simulants of Moon and Mars in situ resources, were irradiated with 1,000 MeV/u 4He, 430 MeV/u 12C and 962-972 MeV/u 56Fe. The results are presented in terms of Bragg curves and dose reduction per unit area density. To isolate the shielding effectiveness only due to nuclear fragmentation, a correction for the energy loss in the material is also considered. These findings indicate that the best shield is lithium hydride, which performs even better than polyethylene. However, the technical feasibility of shielding needs to be investigated. The classification of all materials in terms of shielding effectiveness is not influenced by the ion species, but the value changes dramatically depending on the beam energy. The output of this investigation represents a useful database for benchmarking Monte Carlo and deterministic transport codes used for space radiation transport calculations. These findings also contribute to recommendations for optimizing the design of space vessels and habitats in different radiation environments.


Assuntos
Luz , Proteção Radiológica/métodos , Radiação Cósmica , Humanos , Voo Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...