Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
RSC Adv ; 13(49): 34378-34390, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38024978

RESUMO

Among almost 200 types of cancers, glioma is considered one of the most common forms of malignant tumors located in the central nervous system (CNS). Glioblastoma (GBM), one of the deadliest types of brain cancer, remains one of the challenges faced by oncologists. Thus, smartly designed nanomaterials biofunctionalized with polypeptides can offer disruptive strategies relying on the earliest possible diagnosis ("seeing is believing") combined with more efficient therapies for fighting cancer cells. To worsen this scenario, bacteria infections very often pose a serious challenge to cancer-immunodeficient patients under chemotherapy. Thus, in this research, we report for the first time the design and synthesis of novel nanoconjugates composed of photoluminescent ZnS quantum dots (ZnS QDs), which were directly surface biofunctionalized with epsilon-poly-l-lysine (εPL), acting as an amine-rich cell-penetrating peptide (CPP) and antimicrobial peptide agent (AMP). These nanoconjugates (named ZnS@CPP-AMP) were produced through a one-step facile, eco-friendly, and biocompatible colloidal aqueous process to be applied as a proof of concept as nanoprobes for bioimaging GBM cancer cells (U87-MG) associated with synergic antibacterial activity. They were characterized regarding their physicochemical and optical properties associated with the biological activity. The results demonstrated that chemically stable aqueous colloidal nanoconjugates were effectively formed, resembling core-shell (inorganic, ZnS, organic, εPL) nanostructures with positively surface-charged features due to the cationic nature of the amine-rich polypeptide. More importantly, they demonstrated photoluminescent activity, cytocompatibility in vitro, and no significant intracellular reactive oxygen species (ROS) generation. These ZnS@CPP-AMP nanocolloids behaved as fluorescent nanoprobes for bioimaging GBM cancer cells, where the polycationic nature of the εPL biomolecule may have enhanced the cellular uptake. Additionally, they displayed mild antibacterial growth inhibition due to electrostatic interactions with bacterial membranes. Thus, it can be envisioned that these novel photoluminescent colloidal nanoconjugates offer novel nanoplatforms that can be specifically targeted with biomolecules for bioimaging to diagnose highly lethal cancers, such as GBM, and as an adjuvant in antibacterial therapy.

2.
Polymers (Basel) ; 15(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38231902

RESUMO

Diabetic foot ulcers (DFUs) are considered one of the most severe chronic complications of diabetes and can lead to amputation in severe cases. In addition, bacterial infections in diabetic chronic wounds aggravate this scenario by threatening human health. Wound dressings made of polymer matrices with embedded metal nanoparticles can inhibit microorganism growth and promote wound healing, although the current clinical treatments for diabetic chronic wounds remain unsatisfactory. In this view, this research reports the synthesis and characterization of innovative hybrid hydrogels made of carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) chemically crosslinked by citric acid (CA) functionalized with silver nanoparticles (AgNPs) generated in situ using an eco-friendly aqueous process. The results assessed through comprehensive in vitro and in vivo assays demonstrated that these hybrid polymer hydrogels functionalized with AgNPs possess physicochemical properties, cytocompatibility, hemocompatibility, bioadhesion, antibacterial activity, and biocompatibility suitable for wound dressings to support chronic wound healing process as well as preventing and treating bacterial infections. Hence, it can be envisioned that, with further research and development, these polymer-based hybrid nanoplatforms hold great potential as an important tool for creating a new generation of smart dressings for treating chronic diabetic wounds and opportunistic bacterial infections.

3.
Pharmaceutics ; 14(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36297660

RESUMO

Glioblastoma remains the most lethal form of brain cancer, where hybrid nanomaterials biofunctionalized with polysaccharide peptides offer disruptive strategies relying on passive/active targeting and multimodal therapy for killing cancer cells. Thus, in this research, we report for the first time the rational design and synthesis of novel hybrid colloidal nanostructures composed of gold nanoparticles stabilized by trisodium citrate (AuNP@TSC) as the oxidase-like nanozyme, coupled with cobalt-doped superparamagnetic iron oxide nanoparticles stabilized by carboxymethylcellulose ligands (Co-MION@CMC) as the peroxidase-like nanozyme. They formed inorganic-inorganic dual-nanozyme systems functionalized by a carboxymethylcellulose biopolymer organic shell, which can trigger a biocatalytic cascade reaction in the cancer tumor microenvironment for the combination of magnetothermal-chemodynamic therapy. These nanoassemblies were produced through a green aqueous process under mild conditions and chemically biofunctionalized with integrin-targeting peptide (iRDG), creating bioengineered nanocarriers. The results demonstrated that the oxidase-like nanozyme (AuNP) was produced with a crystalline face-centered cubic nanostructure, spherical morphology (diameter = 16 ± 3 nm), zeta potential (ZP) of -50 ± 5 mV, and hydrodynamic diameter (DH) of 15 ± 1 nm. The peroxide-like nanostructure (POD, Co-MION@CMC) contained an inorganic crystalline core of magnetite and had a uniform spherical shape (2R = 7 ± 1 nm) which, summed to the contribution of the CMC shell, rendered a hydrodynamic diameter of 45 ± 4 nm and a negative surface charge (ZP = -41 ± 5 mV). Upon coupling both nanozymes, water-dispersible colloidal supramolecular vesicle-like organic-inorganic nanostructures were produced (AuNP//Co-MION@CMC, ZP = -45 ± 4 mV and DH = 28 ± 3 nm). They confirmed dual-nanozyme cascade biocatalytic activity targeted by polymer-peptide conjugates (AuNP//Co-MION@CMC_iRGD, ZP = -29 ± 3 mV and DH = 60 ± 4 nm) to kill brain cancer cells (i.e., bioenergy "starvation" by glucose deprivation and oxidative stress through reactive oxygen species generation), which was boosted by the magneto-hyperthermotherapy effect when submitted to the alternating magnetic field (i.e., induced local thermal stress by "nanoheaters"). This groundwork offers a wide avenue of opportunities to develop innovative theranostic nanoplatforms with multiple integrated functionalities for fighting cancer and reducing the harsh side effects of conventional chemotherapy.

4.
Int J Biol Macromol ; 210: 530-544, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35513094

RESUMO

Among the most lethal forms of cancer, malignant brain tumors persist as one of the greatest challenges faced by oncologists, where nanotechnology-driven theranostics can play a critical role in developing novel polymer-based supramolecular nanoarchitectures with multifunctional and multi-modal characteristics to fight cancer. However, it is virtually a consensus that, besides the complexity of active delivering anticancer drugs by the nanocarriers to the tumor site, the current evaluation methods primarily relying on in vitro assays and in vivo animal models have been accounted for the low translational effectiveness to clinical applications. In this view, the chick chorioallantoic membrane (CAM) assay has been increasingly recognized as one of the best preclinical models to study the effects of anticancer drugs on the tumor microenvironment (TME). Thus, in this study, we designed, characterized, and developed novel hybrid nanostructures encompassing chemically functionalized carboxymethylcellulose (CMC) with mitochondria-targeting pro-apoptotic peptide (KLA) and cell-penetrating moiety (cysteine, CYS) with fluorescent inorganic semiconductor (Ag-In-S, AIS) for simultaneously bioimaging and inducing glioblastoma cancer cell (U-87 MG, GBM) death. The results demonstrated that the CMC-peptide macromolecules produced supramolecular vesicle-like nanostructures with aqueous colloidal stability suitable as nanocarriers for passive and active targeting of cancer tumors. The optical properties and physicochemical features of the nanoconjugates confirmed their suitability as photoluminescent nanoprobes for cell bioimaging and intracellular tracking. Moreover, the results in vitro demonstrated a notable killing activity towards GBM cells of cysteine-bearing CMC conjugates coupled with pro-apoptotic KLA peptides. More importantly, compared to doxorubicin (DOX), a model anticancer drug in chemotherapy that is highly toxic, these innovative nanohybrids nanoconjugates displayed higher lethality against U-87 MG cancer cells. In vivo CAM assays validated these findings where the nanohybrids demonstrated a significant reduction of GBM tumor progression (41% area) and evidenced an antiangiogenic activity. These results pave the way for developing polymer-based hybrid nanoarchitectonics applied as targeted multifunctional theranostics for simultaneous imaging and therapy against glioblastoma while possibly reducing the systemic toxicity and side-effects of conventional anticancer chemotherapeutic agents.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Pontos Quânticos , Animais , Antineoplásicos/química , Neoplasias Encefálicas/tratamento farmacológico , Carboximetilcelulose Sódica/química , Linhagem Celular Tumoral , Cisteína , Doxorrubicina/química , Glioblastoma/tratamento farmacológico , Nanoconjugados/uso terapêutico , Polímeros/uso terapêutico , Pontos Quânticos/química , Nanomedicina Teranóstica , Microambiente Tumoral
5.
Pathogens ; 10(8)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34451447

RESUMO

Madariaga virus (MADV) is a member of the eastern equine encephalitis virus (EEEV) complex that circulates in Central and South America. It is a zoonotic, mosquito-borne pathogen, belonging to the family Togaviridae. Disturbances in the natural transmission cycle of this virus result in outbreaks in equines and humans, leading to high case fatality in the former and acute febrile illness or neurological disease in the latter. Although a considerable amount of knowledge exists on the eco-epidemiology of North American EEEV strains, little is known about MADV. In Brazil, the most recent isolations of MADV occurred in 2009 in the States of Paraíba and Ceará, northeast Brazil. Because of that, health authorities have recommended vaccination of animals in these regions. However, in 2019 an equine encephalitis outbreak was reported in a municipality in Ceará. Here, we present the isolation of MADV from two horses that died in this outbreak. The full-length genome of these viruses was sequenced, and phylogenetic analyses performed. Pathological findings from postmortem examination are also discussed. We conclude that MADV is actively circulating in northeast Brazil despite vaccination programs, and call attention to this arbovirus that likely represents an emerging pathogen in Latin America.

6.
Braz J Microbiol ; 52(3): 1623-1626, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34081316

RESUMO

Bluetongue virus (BTV) is an RNA virus that infects cattle and sheep. The objective of this study was to compare two real-time PCRs for the detection of BTV and to monitor Orbivirus viremia in sheep and cattle for 6 months. The PCR results showed the occurrence of infected animals throughout the experiment without records of clinical signs. The number of positive animals reduced during the experiment, but some animals were positive for BTV RNA during the entire experiment. The performance of the two RT-qPCRs for BTV detection techniques used in this work revealed a kappa index of 0.71 for cattle and 0.75 for sheep.


Assuntos
Vírus Bluetongue , Bluetongue , Doenças dos Bovinos , Viremia , Animais , Bluetongue/diagnóstico , Vírus Bluetongue/genética , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/virologia , Reação em Cadeia da Polimerase em Tempo Real , Ovinos , Viremia/diagnóstico , Viremia/veterinária
7.
Int J Biol Macromol ; 182: 1091-1111, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33892028

RESUMO

Acute or chronic brain injuries promote deaths and the life-long debilitating neurological status where, despite advances in therapeutic strategies, clinical outcome hardly achieves total patient recovery. In recent decades, brain tissue engineering emerged as an encouraging area of research for helping in damaged central nervous system (CNS) recovery. Polysaccharides are abundant naturally occurring biomacromolecules with a great potential enhancement of advanced technologies in brain tissue repair and regeneration (BTRR). Besides carrying rich biological information, polysaccharides can interact and communicate with biomolecules, including glycosaminoglycans present in cell membranes and many signaling moieties, growth factors, chemokines, and axon guidance molecules. This review includes a comprehensive investigation of the current progress on designing and developing polysaccharide-based soft matter biomaterials for BTRR. Although few interesting reviews concerning BTRR have been reported, this is the first report specifically focusing on covering multiple polysaccharides and polysaccharide-based functionalized biomacromolecules in this emerging and intriguing field of multidisciplinary knowledge. This review aims to cover the state of art challenges and prospects of this fascinating field while presenting the richness of possibilities of using these natural biomacromolecules for advanced biomaterials in prospective neural tissue engineering applications.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Engenharia Biomédica/métodos , Humanos
8.
Mater Lett ; 277: 128279, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32834256

RESUMO

The earliest possible diagnosis and understanding of the infection mechanisms play a crucial role in the outcome of fighting viral diseases. Thus, we designed and developed for the first time, novel bioconjugates made of Ag-In-S@ZnS (ZAIS) fluorescent quantum dots coupled with ZIKA virus via covalent amide bond with carboxymethylcellulose (CMC) biopolymer for labeling and bioimaging the virus-host cell interactions mechanisms through confocal laser scanning microscopy. This work offers relevant insights regarding the profile of the ZIKA virus-nanoparticle conjugates interactions with VERO cells, which can be applied as a nanoplatform to elucidate the infection mechanisms caused by this viral disease.

9.
J Mater Chem B ; 8(32): 7166-7188, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32614035

RESUMO

Despite the undeniable advances in recent decades, cancer remains one of the deadliest diseases of the current millennium, where the triple-negative breast cancer (TNBC) is very aggressive, extremely metastatic, and resistant to conventional chemotherapy. The nanotheranostic approach focusing on targeting membrane receptors often expressed at abnormal levels by cancer cells can be a strategic weapon for fighting malignant tumors. Herein, we introduced a novel "all-in-one nanosoldier" made of colloidal hybrid nanostructures, which were designed for simultaneously targeting, imaging, and killing TNBC cells. These nanohybrids comprised four distinct components: (a) superparamagnetic iron oxide nanoparticles, as bi-functional nanomaterials for inducing ferroptosis via inorganic nanozyme-mediated catalysis and magnetotherapy by hyperthermia treatment; (b) carboxymethyl cellulose biopolymer, as a water-soluble capping macromolecule; (c) folic acid, as the membranotopic vector for targeting folate receptors; (d) and doxorubicin (DOX) drug for chemotherapy. The results demonstrated that this novel strategy was highly effective for targeting and killing TNBC cells in vitro, expressing high levels of folate membrane-receptors. The results evidenced that three integrated mechanisms triggered the deaths of the cancer cells in vitro: (a) ferroptosis, by magnetite nanoparticles inducing a Fenton-like reaction; (b) magneto-hyperthermia effect by generating heat under an alternate magnetic field; and (c) chemotherapy, through the DOX intracellular release causing DNA dysfunction. This "all-in-one nanosoldier" strategy offers a vast realm of prospective alternatives for attacking cancer cells, combining multimodal therapy and the delivery of therapeutic agents to diseased sites and preserving healthy cells, which is one of the most critical clinical challenges faced in fighting drug-resistant breast cancers.


Assuntos
Antineoplásicos/química , Doxorrubicina/química , Corantes Fluorescentes/química , Nanopartículas de Magnetita/química , Nanocápsulas/química , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/terapia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Terapia Combinada , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/química , Ácido Fólico/metabolismo , Humanos , Hipertermia Induzida/efeitos adversos , Campos Magnéticos , Nanopartículas de Magnetita/uso terapêutico , Terapia de Alvo Molecular , Imagem Óptica , Estudos Prospectivos , Espécies Reativas de Oxigênio/metabolismo , Nanomedicina Teranóstica
10.
Pesqui. vet. bras ; 40(4): 261-265, Apr. 2020. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135624

RESUMO

Bluetongue is an infectious, non-contagious disease that affects domestic and wild ruminants, caused by a virus from the Orbivirus genus, Reoviridae family, transmitted by arthropod vectors of the Culicoides genus. This paper aims to be the first serological survey of bluetongue in sheep from the Meso-regions of Campo das Vertentes and South and Southeast of Minas Gerais. Samples were collected from sheep from different properties. The serum samples were submitted to Agar Gel Immunodiffusion (AGID) and competitive Enzyme-Linked Immunosorbent Assay (cELISA). 303 serum samples were submitted to AGID and cELISA. In these samples, 164 (54.13%) were positive in the AGID technique, and 171 (56.44%) positive in the cELISA technique, with an almost perfect agreement between the techniques (kappa index = 0.887). In all visited properties, positive animals have been found in the herd. Animals acquired from properties of the studied mesoregions were more likely to be positive in IDGA and cELISA tests than animals acquired from properties in other regions of Brazil (p<0.001). These results suggest that bluetongue virus (BTV) is widespread in the mesoregions of Campo das Vertentes and South and Southeast of Minas Gerais.(AU)


A língua azul (LA) é uma doença infecciosa, não contagiosa, que acomete ruminantes domésticos e silvestres, causada por um vírus do gênero Orbivirus da família Reoviridae, transmitida por vetores artrópodes do gênero Culicoides. O presente estudo representa o primeiro trabalho a realizar um inquérito sorológico da língua azul em rebanhos ovinos nas Mesorregiões de Campo das Vertentes e Sul e Sudoeste de Minas Gerais. Foram coletadas amostras de soro de ovinos de diferentes propriedades. As amostras de soro foram submetidas aos testes de imunodifusão em gel de ágar (IDGA) e ensaio de imunoadsorção enzimática por competição (cELISA). Ao todo 303 amostras de soro foram submetidas ao IDGA e cELISA. Dessas amostras, 164 (54,13%) foram positivas na técnica de IDGA e 171 (56,44%) positivas na técnica de cELISA, havendo concordância quase perfeita entre as técnicas (índice kappa = 0,887). Em todas as propriedades visitadas, foram encontrados animais positivos no rebanho. Animais adquiridos de propriedades das Mesorregiões estudadas, tiveram mais chances de serem positivos nos testes de IDGA e cELISA do que animais adquiridos de propriedades de outras Regiões do Brasil (p<0,001). Esses resultados sugerem que o vírus da língua azul encontra-se disseminado em ovinos nas Mesorregiões de Campo das Vertentes e Sul e Sudoeste de Minas Gerais.(AU)


Assuntos
Animais , Orbivirus , Bluetongue/diagnóstico , Bluetongue/imunologia , Bluetongue/epidemiologia , Infecções por Reoviridae/veterinária , Testes Sorológicos/veterinária , Ovinos
11.
Artigo em Inglês | MEDLINE | ID: mdl-30701237

RESUMO

A new strain of chicken megrivirus was identified in fecal samples of layer chickens in a commercial flock in Minas Gerais, Brazil. It is most closely related to the family Picornaviridae, genus Megrivirus, species Melegrivirus A, and has an overall nucleotide identity of up to 85.1% with other megrivirus strains.

12.
ACS Omega ; 3(11): 15679-15691, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30556011

RESUMO

Many human diseases, including metabolic, immune, and central nervous system disorders, as well as several types of cancers, are the consequence of an important alteration in lipid-related metabolic biomolecules. Although recognized that one of the most important metabolic hallmarks of cancer cells is deregulation of lipid metabolism, the multiple complex signaling pathways are poorly understood yet. Thus, in this research, novel nanoconjugates made of ZnS quantum dots (QDs) were directly synthesized in aqueous media using phosphoethanolamine (PEA) as the capping ligand, which is an important biomolecule naturally present in cells for de novo biosynthesis of fatty acids and phospholipids involved in the cell structure (e.g., membrane), differentiation, and cancer growth. These QD-PEA bio-nanoconjugates were characterized by spectroscopical and morphological techniques. The results demonstrated that fluorescent ZnS nanocrystalline QDs were produced with uniform spherical morphology and estimated sizes of 3.3 ± 0.6 nm. These nanoconjugates indicated core-shell colloidal nanostructures (ZnS QD-PEA) with the hydrodynamic diameter (H D) of 26.0 ± 3.5 nm and ζ-potential centered at -30.0 ± 4.5 mV. The cell viability response using mitochondrial activity assay in vitroconfirmed no cytotoxicity at several concentrations of PEA (biomolecule) and the ZnS-PEA nanoconjugates. Moreover, these nanoconjugates effectively behaved as fluorescent nanomarkers for tracking the endocytic pathways of cancer cells using confocal laser scanning microscopy bioimaging. Hence, these results proved that biofunctionalized ZnS-PEA nanoprobes offer prospective tools for cellular bioimaging with encouraging forecast for future applications as active fluorescent biomarker conjugates in metabolic-related cancer research.

13.
Bioconjug Chem ; 29(6): 1973-2000, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29790738

RESUMO

Polymer-drug conjugation is an attractive approach for target delivering insoluble and highly toxic drugs to tumor sites to overcome the side-effects caused by cancer chemotherapy. In this study we designed and synthesized novel polymer-drug-peptide conjugates for improved specificity on targeting cancer cells. Chemically modified polysaccharide, carboxymethylcellulose (CMC), was conjugated with doxorubicin (DOX) anticancer drug by amide bonds and dually biofunctionalized with integrin-target receptor tripeptide (RGD) and l-arginine (R) as cell-penetrating amino acid for synergistic targeting and enhancing internalization by cancer cells. These bioconjugates were tested as prodrugs against bone, breast, and brain cancer cell lines (SAOS, MCF7, and U87) and a normal cell line (HEK 293T, reference). The physicochemical characterization showed the formation of amide bonds between carboxylates (-RCOO-) from CMC biopolymer and amino groups (-NH2) from DOX and peptides (RGD or R). Moreover, these polymer-drug-peptide bioconjugates formed nanoparticulate colloidal structures and behaved as "smart" drug delivery systems (DDS) promoting remarkable reduction of the cytotoxicity toward normal cells (HEK 293T) while retaining high killing activity against cancer cells. Based on cell viability bioassays, DNA-staining, and confocal laser microscopy, this effect was assigned to the association of physicochemical aspects with the difference of the endocytic pathways and the drug release rates in live cells caused by the biofunctionalization of the macromolecule-drug systems with RGD and l-arginine. In addition, chick chorioallantoic membrane (CAM) assay was performed as an in vivo xenograft model test, which endorsed the in vitro results of anticancer activities of these polymer-drug systems. Thus, prodrug nanocarriers based on CMC-DOX-peptide bioconjugates were developed for simultaneously integrin-targeting and high killing efficacy against cancer cells, while preserving healthy cells with promising perspectives in cancer chemotherapy.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Arginina/metabolismo , Carboximetilcelulose Sódica/metabolismo , Doxorrubicina/administração & dosagem , Portadores de Fármacos/metabolismo , Integrinas/metabolismo , Oligopeptídeos/metabolismo , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Arginina/análogos & derivados , Carboximetilcelulose Sódica/análogos & derivados , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Galinhas , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Células HEK293 , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Oligopeptídeos/química
14.
Front Microbiol ; 9: 402, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29568288

RESUMO

Since 1999 Vaccinia virus (VACV) outbreaks involving bovines and humans have been reported in Brazil; this zoonosis is known as Bovine Vaccinia (BV) and is mainly an occupational disease of milkers. It was only in 2008 (and then again in 2011 and 2014) however, that VACV was found causing natural infections in Brazilian equids. These reports involved only equids, no infected humans or bovines were identified, and the sources of infections remain unknown up to date. The peculiarities of Equine Vaccinia outbreaks (e.g., absence of human infection), the frequently shared environments, and fomites by equids and bovines in Brazilian farms and the remaining gaps in BV epidemiology incited a question over OPV serological status of equids in Brazil. For this report, sera from 621 equids - representing different species, ages, sexes and locations of origin within Minas Gerais State, southeast Brazil - were examined for the presence of anti-Orthopoxvirus (OPV) antibodies. Only 74 of these were sampled during an Equine Vaccinia outbreak, meaning some of these specific animals presented typical lesions of OPV infections. The majority of sera, however, were sampled from animals without typical signs of OPV infection and during the absence of reported Bovine or Equine Vaccinia outbreaks. Results suggest the circulation of VACV among equids of southeast Brazil even prior to the time of the first VACV outbreak in 2008. There is a correlation of OPVs outbreaks among bovines and equids although many gaps remain to our understanding of its nature. The data obtained may even be carefully associated to recent discussion over OPVs history. Moreover, data is available to improve the knowledge and instigate new researches regarding OPVs circulation in Brazil and worldwide.

16.
Vet Res Commun ; 41(4): 317-321, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28836073

RESUMO

Seneca Valley virus (SVV) is the etiological agent of vesicular disease in pigs, clinically indistinguishable of classical viral vesicular infections, including foot-and-mouth disease. The first outbreaks of SVV infection in Brazil were reported in 2014. However, it was not known whether the virus was circulating in Brazilian pig herds before this year. This study is a retrospective serological investigation of porcine health status to SVV in Brazil. Serum samples (n = 594) were grouped in before (2007-2013, n = 347) and after (2014-2016, n = 247) SVV outbreaks in Brazil. Twenty-three pig herds were analyzed, of which 19 and 4 were sampled before and after the beginning of SVV outbreaks, respectively. Two herds sampled after 2014 presented animals with SVV-associated clinical manifestations, while the other two housed asymptomatic pigs. Anti-SVV antibodies were evaluated by virus neutralization test. The results demonstrated that pig herds of different Brazilian geographical regions and distinct pig categories were negative to anti-SVV antibodies in sera obtained before 2014. Antibodies to SVV were detected only in serum samples obtained after 2014, particularly in herds with the presence of pigs with SVV-clinical signs. These results present robust serological evidence that the SVV was not present in the major Brazilian pig producing regions prior to 2014.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Picornaviridae/veterinária , Doenças dos Suínos/epidemiologia , Animais , Brasil/epidemiologia , Testes de Neutralização , Picornaviridae/genética , Picornaviridae/imunologia , Infecções por Picornaviridae/epidemiologia , Estudos Retrospectivos , Estudos Soroepidemiológicos , Suínos , Doenças dos Suínos/virologia
17.
J Dairy Sci ; 100(9): 7051-7054, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28734599

RESUMO

Bovine vaccinia is a neglected zoonosis caused by Vaccinia virus (VACV) and has a major economic and public health effect in Brazil. Previous studies showed infectious VACV particles in milk from either experimentally or naturally infected cows and in fresh cheeses prepared with experimentally contaminated milk. Ripening is a process that leads to major changes in the physical and chemical characteristics of cheese, reducing contamination by spoilage, pathogenic microorganisms, or both. However, it is not known if VACV infectious particles persist after the ripening process. To investigate this issue, viral infectivity at different ripening times was studied in cheeses manufactured with milk experimentally contaminated with VACV strain Guarani P2 (GP2). Cheeses were analyzed at 1, 7, 14, 21, 45, and 60 d of ripening at 25°C. Viral DNA was quantified by real-time PCR, and VACV isolation and titration were performed in Vero cells. The whole experiment was repeated 4 times. Analysis of the mean viral DNA quantification and infectivity indicated a reduction of approximately 2 logs along the ripening process; however, infectious viral particles (1.7 × 102 pfu/mL) could still be recovered at d 60 of ripening. These findings indicate that the ripening process reduces VACV infectivity, but it was not able to inactivate completely the viral particles after 60 d.


Assuntos
Queijo/virologia , Vaccinia virus/fisiologia , Fenômenos Fisiológicos Virais , Animais , Brasil , Bovinos , Chlorocebus aethiops , Feminino , Manipulação de Alimentos , Leite/virologia , Fatores de Tempo , Vacínia/virologia , Células Vero
18.
Toxicol Res (Camb) ; 5(4): 1017-1028, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30090409

RESUMO

Bioengineered hybrids are emerging as a new class of nanomaterials consisting of a biopolymer and inorganic semiconductors used in biomedical and environmental applications. The aim of the present work was to determine the cytocompatibility of novel water-soluble Bi2S3 quantum dots (QDs) functionalized with chitosan and O-carboxymethyl chitosan (CMC) as capping ligands using an eco-friendly aqueous process at room temperature. These hybrid nanocomposites were tested for cytocompatibility using a 3-(4,5-dimethylthiazol-2yl) 2,5-diphenyl tetrazolium bromide (MTT) cell proliferation assay with cultured human osteosarcoma cells (SAOS), human embryonic kidney cells (HEK293T cells) and a LIVE/DEAD® viability-cytotoxicity assay. The results of the in vitro assays demonstrated that the CMC and chitosan-based nanohybrids were not cytotoxic and exhibited suitable cell viability responses. However, despite the "safe by design" approach used in this research, we have proved that the impact of the size, surface charge and biofunctionalization of the nanohybrids on cytotoxicity was cell type-dependent due to complex mechanisms. Thus, these novel bionanocomposites offer promising prospects for potential biomedical and pharmaceutical applications as fluorescent nanoprobes.

19.
Artigo em Inglês | MEDLINE | ID: mdl-25953541

RESUMO

Cancer remains one of the world's most devastating diseases with millions of fatalities and new cases every year. In this work, we attempted to develop a facile "enzyme-free" fluoroimmunoassay based on the novel nanoconjugates composed of CdS quantum dots (QDs) as the fluorescent inorganic core and an antibody-modified polysaccharide as the organic shell, modeling their possible application for the in vitro diagnosis of non-Hodgkin lymphoma (NHL) cancer. Chitosan was conjugated with an anti-CD20 polyclonal antibody (pAbCD20) by the formation of covalent amide bonds. In the sequence, these chitosan-antibody conjugates were utilized as direct ligands for the surface biofunctionalization of CdS QDs (CdS/chitosan-pAbCD20) using a single-step colloidal process in aqueous medium at room temperature. The most relevant physico-chemical properties of these nanoconjugates were assessed by morphological and spectroscopic techniques. The results indicated that CdS nanocrystals were produced with an average diameter of 2.5 nm and with cubic zinc blende crystalline nanostructure. The CdS-immunoconjugates (CdS/chitosan-pAbCD20) presented colloidal hydrodynamic diameter (HD) of 15.0 ± 1.2n m. In addition, the results evidenced that the "enzyme-free" QD-linked immunosorbent assay (QLISA) was effective for the in vitro detection against the antigen CD20 (aCD20) based on fluorescent behavior of the CdS nanoconjugates. Moreover, the CdS-immunoconjugates were successfully used for fluorescence bioimaging of NHL cancer cells. Finally, the cell viability results using different cell cultures based on LDH, MTT and Resazurin bio-assays have demonstrated no cytotoxicity of the new CdS-chitosan bioconjugates relative to the standard controls. Thus, CdS conjugates may offer a promising platform for the future development of in vitro and in vivo applications for the detection and diagnosis of NHL cancer cells.


Assuntos
Quitosana/química , Nanoconjugados/química , Pontos Quânticos , Animais , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Fluorimunoensaio , Nanoconjugados/efeitos adversos , Nanopartículas/química , Nanotecnologia , Difração de Raios X
20.
Influenza Other Respir Viruses ; 9(3): 161-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25648743

RESUMO

BACKGROUND: Swine influenza virus (SIV) is the cause of an acute respiratory disease that affects swine worldwide. In Brazil, SIV has been identified in pigs since 1978. After the emergence of pandemic H1N1 in 2009 (H1N1pdm09), few studies reported the presence of influenza virus in Brazilian herds. OBJECTIVES: The objective of this study was to evaluate the serological profile for influenza virus in farrow-to-finish pig farms in Minas Gerais state, Brazil. METHODS: Thirty farms with no SIV vaccination history were selected from the four larger pig production areas in Minas Gerais state (Zona da Mata, Triângulo Mineiro/Alto Paranaíba, South/Southwest and the Belo Horizonte metropolitan area). At each farm, blood samples were randomly collected from 20 animals in each production cycle category: breeding animals (sows and gilts), farrowing crate (2-3 weeks), nursery (4-7 weeks), grower pigs (8-14 weeks), and finishing pigs (15-16 weeks), with 100 samples per farm and a total of 3000 animals in this study. The samples were tested for hemagglutination inhibition activity against H1N1 pandemic strain (A/swine/Brazil/11/2009) and H3N2 SIV (A/swine/Iowa/8548-2/98) reference strain. RESULTS: The percentages of seropositive animals for H1N1pdm09 and H3N2 were 26.23% and 1.57%, respectively, and the percentages of seropositive herds for both viruses were 96.6% and 13.2%, respectively. CONCLUSIONS: The serological profiles differed for both viruses and among the studied areas, suggesting a high variety of virus circulation around the state, as well as the presence of seronegative animals susceptible to influenza infection and, consequently, new respiratory disease outbreaks.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/epidemiologia , Agricultura , Animais , Brasil , Testes de Inibição da Hemaglutinação , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Estudos Soroepidemiológicos , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...