Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37490346

RESUMO

Sickle cell disease (SCD) is a hereditary hemoglobinopathy characterized by painful vaso-occlusive crises (VOC) and chronic hemolysis. The mononuclear phagocyte system is pivotal to SCD pathophysiology, but the mechanisms governing monocyte/macrophage differentiation remain unknown. This study examined the influence of hemolysis on circulating monocyte trajectories in SCD. We discovered that hemolysis stimulated CSF-1 production, partly by endothelial cells via Nrf2, promoting classical monocyte (CMo) differentiation into blood patrolling monocytes (PMo) in SCD mice. However, hemolysis also upregulated CCL-2 through IFN-I, inducing CMo transmigration and differentiation into tissue monocyte-derived macrophages. Blocking CMo transmigration by anti-P selectin antibody in SCD mice increased circulating PMo, corroborating that CMo-to-tissue macrophage differentiation occurs at the expense of CMo-to-blood PMo differentiation. We observed a positive correlation between plasma CSF-1/CCL-2 ratios and blood PMo levels in patients with SCD, underscoring the clinical significance of these two opposing factors in monocyte differentiation. Combined treatment with CSF-1 and anti-P selectin antibody more effectively increased PMo numbers and reduced stasis compared with single-agent therapies in SCD mice. Altogether, these data indicate that monocyte fates are regulated by the balance between two heme pathways, Nrf2/CSF-1 and IFN-I/CCL-2, and suggest that the CSF-1/CCL-2 ratio may present a diagnostic and therapeutic target in SCD.


Assuntos
Anemia Falciforme , Doenças Vasculares , Camundongos , Animais , Hemólise , Monócitos/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/uso terapêutico , Células Endoteliais/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Anemia Falciforme/genética , Anemia Falciforme/tratamento farmacológico , Doenças Vasculares/metabolismo , Diferenciação Celular , Selectinas/metabolismo , Selectinas/uso terapêutico
2.
Microbiol Spectr ; : e0468822, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36786651

RESUMO

Babesia divergens is an apicomplexan parasite that infects human red blood cells (RBCs), initiating cycles of invasion, replication, and egress, resulting in extensive metabolic modification of the host cells. Babesia is an auxotroph for most of the nutrients required to sustain these cycles. There are currently limited studies on the biochemical pathways that support these critical processes, necessitating the high-resolution global metabolomics approach described here to uncover the metabolic interactions between parasite and host RBC. Our results reveal an extensive parasite-mediated modulation of RBC metabolite levels of all classes, including lipids, amino acids, carbohydrates, and nucleotides, with numerous metabolic species varying in proportion to the level of infection. Many of these molecules are scavenged from the host RBCs. This is in accord with the needs of a rapidly proliferating parasite with limited biosynthetic capabilities. Probing these pathways in depth, we used growth inhibition assays to quantitate parasite susceptibility to drugs targeting these pathways and stimulated emission depletion (STED) microscopy to obtain high-resolution images of drug-treated parasites to correlate changes in morphology with specific metabolic blocks in order to validate the data generated by the untargeted metabolomics platform. Thus, interruption of cholesterol scavenging from the host cell led to premature parasite egress, while chemical targeting of the hydrolysis of acyl glycerides led to the buildup of malformed parasites that could not successfully egress. This is the first report detailing the global metabolomic profile of the B. divergens-infected RBC. Besides deciphering diverse aspects of the host-parasite relationship, our results can be exploited by others to uncover further drug targets in the host-parasite biochemical network. IMPORTANCE Human babesiosis is caused by apicomplexan parasites of the Babesia genus and is associated with transfusion-transmitted illness and relapsing disease in immunosuppressed populations. Through its continuous cycles of invasion, proliferation, and egress, B. divergens radically changes the metabolic environment of the host red blood cell, allowing us opportunities to study potential chemical vulnerabilities that can be targeted by drugs. This is the first global metabolomic profiling of Babesia-infected human red blood cells, and our analysis revealed perturbation in all biomolecular classes at levels proportional to the level of infection. In particular, lipids and energy flux pathways in the host cell were altered by infection. We validated the changes in key metabolic pathways by performing inhibition assays accompanied by high-resolution microscopy. Overall, this global metabolomics analysis of Babesia-infected red blood cells has helped to uncover novel aspects of parasite biology and identified potential biochemical pathways that can be targeted for chemotherapeutic intervention.

3.
Blood Adv ; 7(4): 649-663, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35977077

RESUMO

Sickle red blood cells (RBCs) represent a naturally existing host-cell resistance mechanism to hemoparasite infections. We investigate the basis of this resistance using Babesia divergens grown in sickle (SS) and sickle trait (AS) cells. We found that oxygenation and its corresponding effect on RBC sickling, frequency of fetal hemoglobin positive (HbF+) cells, cellular redox environment, and parasite proliferation dynamics, all played a role in supporting or inhibiting Babesia proliferation. To identify cellular determinants that supported infection, an image flow cytometric tool was developed that could identify sickled cells and constituent Hb. We showed that hypoxic conditions impaired parasite growth in both SS and AS cells. Furthermore, cell sickling was alleviated by oxygenation (hyperoxic conditions), which decreased inhibition of parasite proliferation in SS cells. Interestingly, our tool identified HbF+-SS as host-cells of choice under both hypoxic and hyperoxic conditions, which was confirmed using cord RBCs containing high amounts of HbF+ cells. Uninfected SS cells showed a higher reactive oxygen species-containing environment, than AA or AS cells, which was further perturbed on infection. In hostile SS cells we found that Babesia alters its subpopulation structure, with 1N dominance under hypoxic conditions yielding to equivalent ratios of all parasite forms at hyperoxic conditions, favorable for growth. Multiple factors, including oxygenation and its impact on cell shape, HbF positivity, redox status, and parasite pleiotropy allow Babesia propagation in sickle RBCs. Our studies provide a cellular and molecular basis of natural resistance to Babesia, which will aid in defining novel therapies against human babesiosis.


Assuntos
Anemia Falciforme , Babesia , Babesiose , Parasitos , Animais , Humanos , Babesiose/parasitologia , Eritrócitos/parasitologia , Eritrócitos Anormais , Babesia/fisiologia , Hipóxia
4.
Front Cell Infect Microbiol ; 12: 962944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275032

RESUMO

Babesiosis is a zoonosis and an important blood-borne human parasitic infection that has gained attention because of its growing infection rate in humans by transfer from animal reservoirs. Babesia represents a potential threat to the blood supply because asymptomatic infections in man are common, and blood from such donors can cause severe disease in certain recipients. Extracellular vesicles (EVs) are vesicles released by cells that contain a complex mixture of proteins, lipids, glycans, and genetic information that have been shown to play important roles in disease pathogenesis and susceptibility, as well as cell-cell communication and immune responses. In this article, we report on the identification and characterization of EVs released from red blood cells (RBCs) infected by two major human Babesia species-Babesia divergens from in vitro culture and those from an in vivo B. microti mouse infection. Using nanoparticle tracking analysis, we show that there is a range of vesicle sizes from 30 to 1,000 nm, emanating from the Babesia-infected RBC. The study of these EVs in the context of hemoparasite infection is complicated by the fact that both the parasite and the host RBC make and release vesicles into the extracellular environment. However, the EV frequency is 2- to 10-fold higher in Babesia-infected RBCs than uninfected RBCs, depending on levels of parasitemia. Using parasite-specific markers, we were able to show that ~50%-60% of all EVs contained parasite-specific markers on their surface and thus may represent the specific proportion of EVs released by infected RBCs within the EV population. Western blot analysis on purified EVs from both in vivo and in vitro infections revealed several parasite proteins that were targets of the host immune response. In addition, microRNA analysis showed that infected RBC EVs have different microRNA signature from uninfected RBC EVs, indicating a potential role as disease biomarkers. Finally, EVs were internalized by other RBCs in culture, implicating a potential role for these vesicles in cellular communication. Overall, our study points to the multiple functional implications of EVs in Babesia-host interactions and support the potential that EVs have as agents in disease pathogenesis.


Assuntos
Babesia microti , Babesia , Vesículas Extracelulares , MicroRNAs , Humanos , Camundongos , Animais , Babesia/fisiologia , Eritrócitos/parasitologia , Misturas Complexas , Lipídeos
5.
Blood ; 138(13): 1162-1171, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34166491

RESUMO

Patients with sickle cell disease (SCD) suffer from intravascular hemolysis-associated vascular injury and tissue damage. Classical monocytes (CMo), which are the most abundant of circulating monocytes, are activated in SCD, but the cause and consequences of activation remain incompletely understood. We found a positive correlation between total plasma heme levels and circulating interferon-α (IFN-α) in patients with SCD along with upregulation of the type I IFN (IFN-I) inducible genes in sort-purified SCD patients' CMo by transcriptome analysis. We demonstrated that hemolysis led to IFN-I expression, predominantly by mouse liver monocyte and macrophages (Mⲫ), primarily through Tank kinase binding 1 (TBK1)/IκB kinase-ε (IKKε) but not TLR4. In response to hemolysis-induced IFN-I, mouse CMo migrated to the liver and differentiated into monocyte-derived Mⲫ, increasing their numbers by sixfold with acute hemin treatment. Hemolysis-driven IFN-I activity also led to the induction of Fc receptor CD64 expression on monocyte and Mⲫ populations, enhancing alloantibody-mediated erythrophagocytosis in SCD both in vivo in mice and in in vitro human cultures. Altogether, these data demonstrate IFN-I response to hemolysis as a novel activation pathway in monocytes and Mⲫ in SCD, opening the possibility for development of IFN-I-based diagnostics and therapeutics against alloantibody-mediated erythrophagocytosis.


Assuntos
Anemia Falciforme/patologia , Eritrócitos/patologia , Hemólise , Interferon-alfa/imunologia , Fagocitose , Anemia Falciforme/sangue , Anemia Falciforme/imunologia , Animais , Células Cultivadas , Eritrócitos/imunologia , Hemólise/imunologia , Humanos , Interferon-alfa/sangue , Isoanticorpos/imunologia , Camundongos , Camundongos Transgênicos
6.
Blood ; 137(2): 269-280, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33152749

RESUMO

Red blood cell alloimmunization remains a barrier for safe and effective transfusions in sickle cell disease (SCD), but the associated risk factors remain largely unknown. Intravascular hemolysis, a hallmark of SCD, results in the release of heme with potent immunomodulatory activity, although its effect on SCD humoral response, specifically alloimmunization, remains unclear. Here, we found that cell-free heme suppresses human B-cell plasmablast and plasma cell differentiation by inhibiting the DOCK8/STAT3 signaling pathway, which is critical for B-cell activation, as well as by upregulating heme oxygenase 1 (HO-1) through its enzymatic byproducts, carbon monoxide and biliverdin. Whereas nonalloimmunized SCD B cells were inhibited by exogenous heme, B cells from the alloimmunized group were nonresponsive to heme inhibition and readily differentiated into plasma cells. Consistent with a differential B-cell response to hemolysis, we found elevated B-cell basal levels of DOCK8 and higher HO-1-mediated inhibition of activated B cells in nonalloimmunized compared with alloimmunized SCD patients. To overcome the alloimmunized B-cell heme insensitivity, we screened several heme-binding molecules and identified quinine as a potent inhibitor of B-cell activity, reversing the resistance to heme suppression in alloimmunized patients. B-cell inhibition by quinine occurred only in the presence of heme and through HO-1 induction. Altogether, these data suggest that hemolysis can dampen the humoral B-cell response and that B-cell heme responsiveness maybe a determinant of alloimmunization risk in SCD. By restoring B-cell heme sensitivity, quinine may have therapeutic potential to prevent and inhibit alloimmunization in SCD patients.


Assuntos
Anemia Falciforme/terapia , Linfócitos B/imunologia , Heme/imunologia , Hemólise/imunologia , Reação Transfusional/imunologia , Anemia Hemolítica Autoimune/imunologia , Transfusão de Sangue , Células Cultivadas , Fatores de Troca do Nucleotídeo Guanina/imunologia , Humanos , Isoanticorpos/imunologia , Ativação Linfocitária/imunologia
7.
Curr Opin Hematol ; 27(6): 399-405, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32889826

RESUMO

PURPOSE OF REVIEW: As human babesiosis caused by apicomplexan parasites of the Babesia genus is associated with transfusion-transmitted illness and relapsing disease in immunosuppressed populations, it is important to report novel findings relating to parasite biology that may be responsible for such pathology. Blood screening tools recently licensed by the FDA are also described to allow understanding of their impact on keeping the blood supply well tolerated. RECENT FINDINGS: Reports of tick-borne cases within new geographical regions such as the Pacific Northwest of the USA, through Eastern Europe and into China are also on the rise. Novel features of the parasite lifecycle that underlie the basis of parasite persistence have recently been characterized. These merit consideration in deployment of both detection, treatment and mitigation tools such as pathogen inactivation technology. The impact of new blood donor screening tests in reducing transfusion transmitted babesiosis is discussed. SUMMARY: New Babesia species have been identified globally, suggesting that the epidemiology of this disease is rapidly changing, making it clear that human babesiosis is a serious public health concern that requires close monitoring and effective intervention measures. Unlike other erythrocytic parasites, Babesia exploits unconventional lifecycle strategies that permit host cycles of different lengths to ensure survival in hostile environments. With the licensure of new blood screening tests, incidence of transfusion transmission babesiosis has decreased.


Assuntos
Babesia/isolamento & purificação , Babesiose/diagnóstico , Babesiose/epidemiologia , Segurança do Sangue , Animais , Babesia/crescimento & desenvolvimento , Babesia/fisiologia , Babesiose/terapia , Babesiose/transmissão , Segurança do Sangue/efeitos adversos , Transfusão de Sangue , Eritrócitos/parasitologia , Interações Hospedeiro-Parasita , Humanos , Estágios do Ciclo de Vida , Saúde Pública
8.
9.
PLoS Negl Trop Dis ; 13(8): e0007680, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31425518

RESUMO

Babesiosis is considered an emerging disease because its incidence has significantly increased in the last 30 years, providing evidence of the expanding range of this rare but potentially life-threatening zoonotic disease. Babesia divergens is a causative agent of babesiosis in humans and cattle in Europe. The recently sequenced genome of B. divergens revealed over 3,741 protein coding-genes and the 10.7-Mb high-quality draft become the first reference tool to study the genome structure of B. divergens. Now, by exploiting this sequence data and using new computational tools and assembly strategies, we have significantly improved the quality of the B. divergens genome. The new assembly shows better continuity and has a higher correspondence to B. bovis chromosomes. Moreover, we present a differential expression analysis using RNA sequencing of the two different stages of the asexual lifecycle of B. divergens: the free merozoite capable of invading erythrocytes and the intraerythrocytic parasite stage that remains within the erythrocyte until egress. Comparison of mRNA levels of both stages identified 1,441 differentially expressed genes. From these, around half were upregulated and the other half downregulated in the intraerythrocytic stage. Orthogonal validation by real-time quantitative reverse transcription PCR confirmed the differential expression. A moderately increased expression level of genes, putatively involved in the invasion and egress processes, were revealed in the intraerythrocytic stage compared with the free merozoite. On the basis of these results and in the absence of molecular models of invasion and egress for B. divergens, we have proposed the identified genes as putative molecular players in the invasion and egress processes. Our results contribute to an understanding of key parasitic strategies and pathogenesis and could be a valuable genomic resource to exploit for the design of diagnostic methods, drugs and vaccines to improve the control of babesiosis.


Assuntos
Babesia/crescimento & desenvolvimento , Babesia/genética , Perfilação da Expressão Gênica , Genoma de Protozoário , Animais , Babesiose/parasitologia , Bovinos , Doenças dos Bovinos/parasitologia , Biologia Computacional , Genômica , Humanos
10.
Pathogens ; 8(3)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269710

RESUMO

Babesia divergens is an obligate intracellular protozoan parasite that causes zoonotic disease. Central to its pathogenesis is the ability of the parasite to invade host red blood cells of diverse species, and, once in the host blood stream, to manipulate the composition of its population to allow it to endure unfavorable conditions. Here we will review key in vitro studies relating to the survival strategies that B. divergens adopts during its intraerythrocytic development to persist and how proliferation is restored in the parasite population once optimum conditions return.

11.
Haematologica ; 104(11): 2189-2199, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30923098

RESUMO

Babesia divergens is an intra-erythrocytic parasite that causes malaria-like symptoms in infected people. As the erythrocyte provides the parasite with the infra-structure to grow and multiply, any perturbation to the cell should impact parasite viability. Support for this comes from the multitude of studies that have shown that the sickle trait has in fact been selected because of the protection it provides against a related Apicomplexan parasite, Plasmodium, that causes malaria. In this paper, we examine the impact of both the sickle cell anemia and sickle trait red blood cell (RBC) environment on different aspects of the B. divergens life-cycle, and reveal that multiple aspects of parasite biological processes are altered in the mutant sickle anemia RBC. Such processes include parasite population progression, caused potentially by defective merozoite infectivity and/or defective egress from the sickle cell, resulting in severely lowered parasitemia in these cells with sickle cell anemia. In contrast, the sickle trait RBC provide a supportive environment permitting in vitro infection rates comparable to those of wild-type RBC. The elucidation of these naturally occurring RBC resistance mechanisms is needed to shed light on host-parasite interaction, lend evolutionary insights into these related blood-borne parasites, and to provide new insights into the development of therapies against this disease.


Assuntos
Anemia Falciforme/complicações , Babesia/fisiologia , Babesiose/complicações , Babesiose/parasitologia , Eritrócitos/parasitologia , Interações Hospedeiro-Parasita , Estágios do Ciclo de Vida , Anemia Falciforme/genética , Progressão da Doença , Citometria de Fluxo , Genótipo , Hemoglobinas/genética , Hemoglobinas/metabolismo , Humanos
12.
Haematologica ; 104(10): 1984-1994, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30819915

RESUMO

Transmembrane protein 30A (Tmem30a) is the ß-subunit of P4-ATPases which function as flippase that transports aminophospholipids such as phosphatidylserine from the outer to the inner leaflets of the plasma membrane to maintain asymmetric distribution of phospholipids. It has been documented that deficiency of Tmem30a led to exposure of phosphatidylserine. However, the role of Tmem30a in vivo remains largely unknown. Here we found that Vav-Cre-driven conditional deletion of Tmem30a in hematopoietic cells led to embryonic lethality due to severe anemia by embryonic day 16.5. The numbers of erythroid colonies and erythroid cells were decreased in the Tmem30a deficient fetal liver. This was accompanied by increased apoptosis of erythroid cells. Confocal microscopy analysis revealed an increase of localization of erythropoietin receptor to areas of membrane raft microdomains in response to erythropoietin stimulation in Ter119-erythroid progenitors, which was impaired in Tmem30a deficient cells. Moreover, erythropoietin receptor (EPOR)-mediated activation of the STAT5 pathway was significantly reduced in Tmem30a deficient fetal liver cells. Consistently, knockdown of TMEM30A in human CD34+ cells also impaired erythropoiesis. Our findings demonstrate that Tmem30a plays a critical role in erythropoiesis by regulating the EPOR signaling pathway through the formation of membrane rafts in erythroid cells.


Assuntos
Eritropoese , Feto/embriologia , Hematopoese Extramedular , Células-Tronco Hematopoéticas/enzimologia , Fígado/embriologia , Proteínas de Membrana/deficiência , Animais , Feto/citologia , Células-Tronco Hematopoéticas/citologia , Fígado/citologia , Microdomínios da Membrana/enzimologia , Microdomínios da Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Transdução de Sinais
13.
Int J Parasitol ; 49(2): 115-125, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30367868

RESUMO

Human babesiosis is an emerging tick-borne parasitic disease and blood transfusion-transmitted infection primarily caused by the apicomplexan parasite, Babesia microti. There is no licensed vaccine for B. microti and the development of a reliable serological screening test would contribute to ensuring the safety of the donated blood supply. The recent sequencing of the B. microti genome has revealed many novel genes encoding proteins that can now be tested for their suitability as subunit vaccine candidates and diagnostic serological markers. Extracellular proteins are considered excellent vaccine candidates and serological markers because they are directly exposed to the host humoral immune system, but can be challenging to express as soluble recombinant proteins. We have recently developed an approach based on a mammalian expression system that can produce large panels of functional recombinant cell surface and secreted parasite proteins. Here, we use the B. microti genome sequence to identify 54 genes that are predicted to encode surface-displayed and secreted proteins expressed during the blood stages, and show that 41 (76%) are expressed using our method at detectable levels. We demonstrate that the proteins contain conformational, heat-labile, epitopes and use them to serologically profile the kinetics of the humoral immune responses to two strains of B. microti in a murine infection model. Using sera from validated human infections, we show a concordance in the host antibody responses to B. microti infections in mouse and human hosts. Finally, we show that BmSA1 expressed in mammalian cells can elicit high antibody titres in vaccinated mice using a human-compatible adjuvant but these antibodies did not affect the pathology of infection in vivo. Our library of recombinant B. microti cell surface and secreted antigens constitutes a valuable resource that could contribute to the development of a serological diagnostic test, vaccines, and elucidate the molecular basis of host-parasite interactions.


Assuntos
Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Babesia microti/imunologia , Testes Sorológicos/métodos , Vacinologia/métodos , Animais , Babesia microti/genética , Babesiose/diagnóstico , Babesiose/prevenção & controle , Biblioteca Gênica , Genética Microbiana , Humanos , Camundongos , Biologia Molecular
14.
Blood Adv ; 2(23): 3462-3478, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30518538

RESUMO

The intraerythrocytic parasite Babesia microti is the number 1 cause of transfusion-transmitted infection and can induce serious, often life-threatening complications in immunocompromised individuals including transfusion-dependent patients with sickle cell disease (SCD). Despite the existence of strong long-lasting immunological protection against a second infection in mouse models, little is known about the cell types or the kinetics of protective adaptive immunity mounted following Babesia infection, especially in infection-prone SCD that are thought to have an impaired immune system. Here, we show, using a mouse B microti infection model, that infected wild-type (WT) mice mount a very strong adaptive immune response, characterized by (1) coordinated induction of a robust germinal center (GC) reaction; (2) development of follicular helper T (TFH) cells that comprise ∼30% of splenic CD4+ T cells at peak expansion by 10 days postinfection; and (3) high levels of effector T-cell cytokines, including interleukin 21 and interferon γ, with an increase in the secretion of antigen (Ag)-specific antibodies (Abs). Strikingly, the Townes SCD mouse model had significantly lower levels of parasitemia. Despite a highly disorganized splenic architecture before infection, these mice elicited a surprisingly robust adaptive immune response (including comparable levels of GC B cells, TFH cells, and effector cytokines as control and sickle trait mice), but higher immunoglobulin G responses against 2 Babesia-specific proteins, which may contain potential immunogenic epitopes. Together, these studies establish the robust emergence of adaptive immunity to Babesia even in immunologically compromised SCD mice. Identification of potentially immunogenic epitopes has implications to identify long-term carriers, and aid Ag-specific vaccine development.


Assuntos
Imunidade Adaptativa , Anemia Falciforme/patologia , Babesia microti/imunologia , Babesiose/patologia , Parasitemia/diagnóstico , Anemia Falciforme/parasitologia , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Babesia microti/isolamento & purificação , Babesiose/imunologia , Babesiose/parasitologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Modelos Animais de Doenças , Epitopos/imunologia , Eritrócitos/citologia , Imunoglobulina G/sangue , Interferon gama/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
15.
Cytometry A ; 91(3): 216-231, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28207983

RESUMO

Human babesiosis is a global emerging infectious disease caused by intraerythrocytic parasites of the genus Babesia. Its biology has remained largely unexplored due to a lack of critical tools and techniques required to define the various stages and phases of the parasite's cycle in its host RBC and the interplay between host and parasite. This article presents a powerful set of tools combining stage synchronization of the parasite with a platform that encompasses both a flow cytometric evaluation of the subpopulation structure of the parasite population together with a morphological assessment of the population parasites using light microscopy of conventional Giemsa stained smears. Together, these yield specific information on the effect of any drug/condition of interest and its targeted biological process, allowing the characterization of the adaptive response of parasites to a particular stressor agent. Three inhibitors were used in this study, each targeting a specific phase of the parasite's lifecycle, neuraminidase for host cell invasion, N-acetyl-L-leucyl-L-leucyl-L-norleucinal for parasite development and EGTA for parasite egress from the host cell. Results presented prove the power of this combination platform in discriminating the specific targets among the life-cycle processes of the parasite-invasion, development/proliferation and egress. This will expand the range of queries that can now be successfully addressed in this parasite, opening avenues for the development of new methods to control babesiosis, either by chemicals (screening for new chemotherapy drugs or defining levels of parasite resistance) or physical methods (light irradiation or heat shock used in pathogen reduction/elimination methods). © 2017 International Society for Advancement of Cytometry.


Assuntos
Babesia/isolamento & purificação , Babesiose/tratamento farmacológico , Citometria de Fluxo/métodos , Animais , Babesia/efeitos dos fármacos , Babesia/patogenicidade , Babesiose/diagnóstico por imagem , Babesiose/parasitologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos
16.
Vector Borne Zoonotic Dis ; 16(10): 677-9, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27560451

RESUMO

Babesiosis is an emerging zoonosis now found in several areas of the world. Using PCR and indirect immunofluorescence assay, we have diagnosed the first case of human babesiosis caused by Babesia microti in Spain. Diagnosis was delayed because of the nonspecific clinical symptoms that occurred in an immunocompetent patient.


Assuntos
Babesia microti , Babesiose/epidemiologia , Babesiose/microbiologia , Adulto , Animais , Antibacterianos/uso terapêutico , Babesiose/tratamento farmacológico , Humanos , Masculino , Espanha/epidemiologia , Zoonoses
17.
Infect Immun ; 84(5): 1574-1584, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26953328

RESUMO

Apicomplexan parasites include those of the genera Plasmodium, Cryptosporidium, and Toxoplasma and those of the relatively understudied zoonotic genus Babesia In humans, babesiosis, particularly transfusion-transmitted babesiosis, has been emerging as a major threat to public health. Like malaria, the disease pathology is a consequence of the parasitemia which develops through cyclical replication of Babesia parasites in host erythrocytes. However, there are no exoerythrocytic stages in Babesia, so targeting of the blood stage and associated proteins to directly prevent parasite invasion is the most desirable option for effective disease control. Especially promising among such molecules are the rhoptry neck proteins (RONs), whose homologs have been identified in many apicomplexan parasites. RONs are involved in the formation of the moving junction, along with AMA1, but no RON has been identified and characterized in any Babesia spp. Here we identify the RON2 proteins of Babesia divergens (BdRON2) and B. microti (BmRON2) and show that they are localized apically and that anti-BdRON2 antibodies are significant inhibitors of parasite invasion in vitro Neither protein is immunodominant, as both proteins react only marginally with sera from infected animals. Further characterization of the direct role of both BdRON2 and BmRON2 in parasite invasion is required, but knowledge of the level of conformity of RON2 proteins within the apicomplexan phylum, particularly that of the AMA1-RON2 complex at the moving junction, along with the availability of an animal model for B. microti studies, provides a key to target this complex with a goal of preventing the erythrocytic invasion of these parasites and to further our understanding of the role of these conserved ligands in invasion.


Assuntos
Babesia/genética , Endocitose , Eritrócitos/parasitologia , Proteínas de Protozoários/genética , Fatores de Virulência/genética , Animais , Anticorpos Antiprotozoários/imunologia , Babesia/imunologia , Babesia/fisiologia , Humanos , Proteínas de Protozoários/antagonistas & inibidores , Fatores de Virulência/antagonistas & inibidores , Fatores de Virulência/metabolismo
18.
Cell Microbiol ; 18(6): 859-74, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26663747

RESUMO

Babesia parasites cause a malaria-like febrile illness by infection of red blood cells (RBCs). Despite the growing importance of this tick-borne infection, its basic biology has been neglected. Using novel synchronization tools, the sequence of intra-erythrocytic events was followed from invasion through development and differentiation to egress. The dynamics of the parasite population were studied in culture, revealing for the first time, the complete array of morphological forms in a precursor-product relationship. Important chronological constants including Babesia's highly unusual variable intra-erythrocytic life cycle, the life span of each population of infected cells and the time required for the genesis of the different parasite stages were elucidated. Importantly, the maintenance of specific ratios of the infected RBC populations was shown to be responsible for the parasites' choice of developmental pathways, enabling swift responses to changing environmental conditions like availability of RBCs and nutrition. These results could impact the control of parasite proliferation and therefore disease.


Assuntos
Babesia/fisiologia , Babesia/patogenicidade , Eritrócitos/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Babesia/citologia , Babesiose/parasitologia , Técnicas de Cultura de Células/métodos , Replicação do DNA , Humanos
19.
Curr Clin Microbiol Rep ; 2(4): 173-181, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26594611

RESUMO

Human babesiosis is a zoonotic disease caused by protozoan parasites of the Babesia genus, primarily in the Northeastern and Midwest United States due to B. microti, and Western Europe due to B. divergens. Parasites are transmitted by the bite of the ixodid tick when the vector takes a blood meal from the vertebrate host, and the economic importance of bovine babesiosis is well understood. The pathology of human disease is a direct result of the parasite's ability to invade host's red blood cells. The current understanding of human babesiosis epidemiology is that many infections remain asymptomatic, especially in younger or immune competent individuals, and the burden of severe pathology resides within older or immunocompromised individuals. However, transfusion-transmitted babesiosis is an emerging threat to public health as asymptomatic carriers donate blood and there are as yet no licensed or regulated tests to screen blood products for this pathogen. Reports of tick-borne cases within new geographical regions such as the Pacific Northwest of the US, through Eastern Europe, and into China are also on the rise. Further, new Babesia spp. have been identified globally as agents of severe human babesiosis, suggesting that the epidemiology of this disease is rapidly changing, and it is clear that human babesiosis is a serious public health concern that requires close monitoring and effective intervention measure.

20.
Hum Vaccin Immunother ; 11(6): 1465-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25844685

RESUMO

With drug resistance to available therapeutics continuing to develop against Plasmodium falciparum malaria, the development of an effective vaccine candidate remains a major research goal. Successful interruption of invasion of parasites into erythrocytes during the blood stage of infection will prevent the severe clinical symptoms and complications associated with malaria. Previously studied blood stage antigens have highlighted the hurdles that are inherent to this life-cycle stage, namely that highly immunogenic antigens are also globally diverse, resulting in protection only against the vaccine strain, or that naturally acquired immunity to blood stage antigens do not always correlate with actual protection. The blood stage antigen reticulocyte binding homolog RH5 is essential for parasite viability, has globally limited diversity, and is associated with protection from disease. Here we summarize available information on this invasion ligand and recent findings that highlight its candidacy for inclusion in a blood-stage malaria vaccine.


Assuntos
Proteínas de Transporte/imunologia , Descoberta de Drogas/tendências , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/isolamento & purificação , Malária/prevenção & controle , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...