Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948269

RESUMO

In this study, we utilized human DNA topoisomerase IIα as a model target to outline a dynophore-based approach to catalytic inhibitor design. Based on MD simulations of a known catalytic inhibitor and the native ATP ligand analog, AMP-PNP, we derived a joint dynophore model that supplements the static structure-based-pharmacophore information with a dynamic component. Subsequently, derived pharmacophore models were employed in a virtual screening campaign of a library of natural compounds. Experimental evaluation identified flavonoid compounds with promising topoisomerase IIα catalytic inhibition and binding studies confirmed interaction with the ATPase domain. We constructed a binding model through docking and extensively investigated it with molecular dynamics MD simulations, essential dynamics, and MM-GBSA free energy calculations, thus reconnecting the new results to the initial dynophore-based screening model. We not only demonstrate a new design strategy that incorporates a dynamic component of molecular recognition, but also highlight new derivates in the established flavonoid class of topoisomerase II inhibitors.


Assuntos
Desenho de Fármacos/métodos , Inibidores da Topoisomerase II/farmacologia , Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Domínio Catalítico/fisiologia , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/metabolismo
2.
Bioorg Chem ; 99: 103828, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32315896

RESUMO

Cancer constitutes a group of diseases linked to abnormal cell growth that can potentially spread to other parts of the body and is one of the most common causes of death. The molecular motors - DNA topoisomerases - that enable topological changes of the DNA molecule are one of the most established targets of cancer therapies. Due to known limitations of established topo II poisons such as cardiotoxicity, induction of secondary malignancies and recognized cancer cell resistance, an emerging group of catalytic topo II inhibitors attempts to circumvent these challenges. Currently, this approach comprises several subgroups of mechanistically diverse inhibitors, one of which are compounds that act by binding to their ATPase domain. In this study we have designed, synthesized and characterized a new series of 3,5-substituted 1,2,4-oxadiazoles that act as catalytic inhibitors of human topo IIα. The introduction of the substituted rigid substitutions on the oxadiazole backbone was intended to enhance the interactions with the ATP binding site. In the inhibition assays selected compounds revealed a new class of catalytic inhibitors targeting this molecular motor and showed binding to the isolated topo IIα ATPase domain. The predicted inhibitor binding geometries were evaluated in molecular dynamics simulations and subsequently dynophore models were derived, which provided a deeper insight into molecular recognition with its macromolecular target. Selected compounds also displayed in vitro cytotoxicity on the investigated MCF-7 cancer cell line and did not induce double-strand breaks (DSB), thus displaying a mechanism of action diverse from the topo II poisons also on the cellular level. The substituted oxadiazoles thus comprise a chemical class of interesting compounds that are synthetically fully amenable for further optimization to anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Desenho de Fármacos , Oxidiazóis/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Biocatálise , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA